These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34161273)

  • 1. Electrochemical quantification of accelerated FADGDH rates in aqueous nanodroplets.
    Vannoy KJ; Lee I; Sode K; Dick JE
    Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34161273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive Electrochemistry by Radical Annihilation Amplification in a Solid-Liquid Microgap.
    Kazemi R; Tarolla NE; Dick JE
    Anal Chem; 2020 Dec; 92(24):16260-16266. PubMed ID: 33241685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Electrochemical Perspective on Reaction Acceleration in Microdroplets.
    Vannoy KJ; Edwards MQ; Renault C; Dick JE
    Annu Rev Anal Chem (Palo Alto Calif); 2024 Jul; 17(1):149-171. PubMed ID: 38594942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designer fungus FAD glucose dehydrogenase capable of direct electron transfer.
    Ito K; Okuda-Shimazaki J; Mori K; Kojima K; Tsugawa W; Ikebukuro K; Lin CE; La Belle J; Yoshida H; Sode K
    Biosens Bioelectron; 2019 Jan; 123():114-123. PubMed ID: 30057265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical-Shock Synthesis of Nanoparticles from Sub-femtoliter Nanodroplets.
    Reyes-Morales J; Dick JE
    Acc Chem Res; 2023 May; 56(10):1178-1189. PubMed ID: 37155578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Microelectrode Insulator Influences Water Nanodroplet Collisions.
    Vannoy KJ; Renault C; Dick JE
    Anal Chem; 2023 May; 95(18):7286-7293. PubMed ID: 37092981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Probing Liquid/Liquid Interfacial Kinetics through Single Nanodroplet Electrochemistry.
    Moon H; Park JH
    Anal Chem; 2021 Dec; 93(50):16915-16921. PubMed ID: 34860502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemistry in diabetes management.
    Heller A; Feldman B
    Acc Chem Res; 2010 Jul; 43(7):963-73. PubMed ID: 20384299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct electron transfer type disposable sensor strip for glucose sensing employing an engineered FAD glucose dehydrogenase.
    Yamashita Y; Ferri S; Huynh ML; Shimizu H; Yamaoka H; Sode K
    Enzyme Microb Technol; 2013 Feb; 52(2):123-8. PubMed ID: 23273282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel fungal FAD glucose dehydrogenase derived from Aspergillus niger for glucose enzyme sensor strips.
    Sode K; Loew N; Ohnishi Y; Tsuruta H; Mori K; Kojima K; Tsugawa W; LaBelle JT; Klonoff DC
    Biosens Bioelectron; 2017 Jan; 87():305-311. PubMed ID: 27573296
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Qian Y; Brown JB; Zhang T; Huang-Fu ZC; Rao Y
    J Phys Chem A; 2022 Jun; 126(23):3758-3764. PubMed ID: 35667005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlated Optical-Electrochemical Measurements Reveal Bidirectional Current Steps for Graphene Nanoplatelet Collisions at Ultramicroelectrodes.
    Pendergast AD; Renault C; Dick JE
    Anal Chem; 2021 Feb; 93(5):2898-2906. PubMed ID: 33491447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of different FAD-dependent glucose dehydrogenases for possible use in glucose-based biosensors and biofuel cells.
    Zafar MN; Beden N; Leech D; Sygmund C; Ludwig R; Gorton L
    Anal Bioanal Chem; 2012 Feb; 402(6):2069-77. PubMed ID: 22222911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of electrosprayed water nanodroplets: internal potential gradients, location of excess charge centers, and "hopping" protons.
    Ahadi E; Konermann L
    J Phys Chem B; 2009 May; 113(20):7071-80. PubMed ID: 19388688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyelectrolyte Coatings Can Control Charged Fluorocarbon Nanodroplet Stability and Their Interaction with Macrophage Cells.
    Martin AL; Homenick CM; Xiang Y; Gillies E; Matsuura N
    Langmuir; 2019 Apr; 35(13):4603-4612. PubMed ID: 30757902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study of homogeneous nanodroplet growth.
    Quang TSB; Leong FY; Mirsaidov UM
    J Colloid Interface Sci; 2015 Jan; 438():47-54. PubMed ID: 25454424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mediator Preference of Two Different FAD-Dependent Glucose Dehydrogenases Employed in Disposable Enzyme Glucose Sensors.
    Loew N; Tsugawa W; Nagae D; Kojima K; Sode K
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29144384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Droplet Composition on Nanodroplet-Mediated Histotripsy.
    Vlaisavljevich E; Aydin O; Durmaz YY; Lin KW; Fowlkes B; Xu Z; ElSayed ME
    Ultrasound Med Biol; 2016 Apr; 42(4):931-46. PubMed ID: 26774470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spiers Memorial Lecture. Next generation nanoelectrochemistry: the fundamental advances needed for applications.
    Wu Y; Jamali S; Tilley RD; Gooding JJ
    Faraday Discuss; 2022 Apr; 233(0):10-32. PubMed ID: 34874385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical characteristics of a gold nanoparticle-modified controlled enzyme-electrode contact junction electrode.
    Mori S; Kitta Y; Sakamoto H; Takamura E; Suye SI
    Biotechnol Lett; 2021 May; 43(5):1037-1042. PubMed ID: 33576902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.