These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 34161317)

  • 21. Developing roles for Hox proteins in hindbrain gene regulatory networks.
    Ghosh P; Sagerström CG
    Int J Dev Biol; 2018; 62(11-12):767-774. PubMed ID: 30604846
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular dissection of segment formation in the developing hindbrain.
    Labalette C; Wassef MA; Desmarquet-Trin Dinh C; Bouchoucha YX; Le Men J; Charnay P; Gilardi-Hebenstreit P
    Development; 2015 Jan; 142(1):185-95. PubMed ID: 25516974
    [TBL] [Abstract][Full Text] [Related]  

  • 23. vhnf1 and Fgf signals synergize to specify rhombomere identity in the zebrafish hindbrain.
    Wiellette EL; Sive H
    Development; 2003 Aug; 130(16):3821-9. PubMed ID: 12835397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Epithelial relaxation mediated by the myosin phosphatase regulator Mypt1 is required for brain ventricle lumen expansion and hindbrain morphogenesis.
    Gutzman JH; Sive H
    Development; 2010 Mar; 137(5):795-804. PubMed ID: 20147380
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Retinoic acid regulates size, pattern and alignment of tissues at the head-trunk transition.
    Lee K; Skromne I
    Development; 2014 Nov; 141(22):4375-84. PubMed ID: 25371368
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression of Fgf-3 in relation to hindbrain segmentation, otic pit position and pharyngeal arch morphology in normal and retinoic acid-exposed mouse embryos.
    Mahmood R; Mason IJ; Morriss-Kay GM
    Anat Embryol (Berl); 1996 Jul; 194(1):13-22. PubMed ID: 8800419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neuronal regulation of the spatial patterning of neurogenesis.
    Gonzalez-Quevedo R; Lee Y; Poss KD; Wilkinson DG
    Dev Cell; 2010 Jan; 18(1):136-47. PubMed ID: 20152184
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Early requirement for fgf8 function during hindbrain pattern formation in zebrafish.
    Wiellette EL; Sive H
    Dev Dyn; 2004 Feb; 229(2):393-9. PubMed ID: 14745965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel vertebrate svp-related nuclear receptor is expressed as a step gradient in developing rhombomeres and is affected by retinoic acid.
    Fjose A; Weber U; Mlodzik M
    Mech Dev; 1995 Aug; 52(2-3):233-46. PubMed ID: 8541212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of novel caudal hindbrain genes reveals different regulatory logic for gene expression in rhombomere 4 versus 5/6 in embryonic zebrafish.
    Ghosh P; Maurer JM; Sagerström CG
    Neural Dev; 2018 Jun; 13(1):13. PubMed ID: 29945667
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cdx-Hox code controls competence for responding to Fgfs and retinoic acid in zebrafish neural tissue.
    Shimizu T; Bae YK; Hibi M
    Development; 2006 Dec; 133(23):4709-19. PubMed ID: 17079270
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fgf8 and Fgf3 are required for zebrafish ear placode induction, maintenance and inner ear patterning.
    Léger S; Brand M
    Mech Dev; 2002 Nov; 119(1):91-108. PubMed ID: 12385757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The transcriptional mediator component Med12 is required for hindbrain boundary formation.
    Hong SK; Dawid IB
    PLoS One; 2011 Apr; 6(4):e19076. PubMed ID: 21533047
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Signalling from hindbrain boundaries regulates neuronal clustering that patterns neurogenesis.
    Terriente J; Gerety SS; Watanabe-Asaka T; Gonzalez-Quevedo R; Wilkinson DG
    Development; 2012 Aug; 139(16):2978-87. PubMed ID: 22764046
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation and regeneration of rhombomere boundaries in the developing chick hindbrain.
    Guthrie S; Lumsden A
    Development; 1991 May; 112(1):221-9. PubMed ID: 1769330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolutionary emergence of the
    Letelier J; Terriente J; Belzunce I; Voltes A; Undurraga CA; Polvillo R; Devos L; Tena JJ; Maeso I; Retaux S; Gomez-Skarmeta JL; Martínez-Morales JR; Pujades C
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):E3731-E3740. PubMed ID: 29610331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Constructing the hindbrain: insights from the zebrafish.
    Moens CB; Prince VE
    Dev Dyn; 2002 May; 224(1):1-17. PubMed ID: 11984869
    [TBL] [Abstract][Full Text] [Related]  

  • 38. EphA4 and EfnB2a maintain rhombomere coherence by independently regulating intercalation of progenitor cells in the zebrafish neural keel.
    Kemp HA; Cooke JE; Moens CB
    Dev Biol; 2009 Mar; 327(2):313-26. PubMed ID: 19135438
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rhombomere development in a reptilian embryo.
    Pritz MB
    J Comp Neurol; 1999 Aug; 411(2):317-26. PubMed ID: 10404256
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zebrafish gbx1 refines the midbrain-hindbrain boundary border and mediates the Wnt8 posteriorization signal.
    Rhinn M; Lun K; Ahrendt R; Geffarth M; Brand M
    Neural Dev; 2009 Apr; 4():12. PubMed ID: 19341460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.