BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 34161319)

  • 1. Multiscale modeling of tumor growth and angiogenesis: Evaluation of tumor-targeted therapy.
    Jafari Nivlouei S; Soltani M; Carvalho J; Travasso R; Salimpour MR; Shirani E
    PLoS Comput Biol; 2021 Jun; 17(6):e1009081. PubMed ID: 34161319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multiscale cell-based model of tumor growth for chemotherapy assessment and tumor-targeted therapy through a 3D computational approach.
    Jafari Nivlouei S; Soltani M; Shirani E; Salimpour MR; Travasso R; Carvalho J
    Cell Prolif; 2022 Mar; 55(3):e13187. PubMed ID: 35132721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capturing the Dynamics of a Hybrid Multiscale Cancer Model with a Continuum Model.
    Joshi TV; Avitabile D; Owen MR
    Bull Math Biol; 2018 Jun; 80(6):1435-1475. PubMed ID: 29549576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mathematical model of angiogenesis and tumor growth: analysis and application in anti-angiogenesis therapy.
    Zheng X; Sweidan M
    J Math Biol; 2018 Nov; 77(5):1589-1622. PubMed ID: 30019238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D multi-cell simulation of tumor growth and angiogenesis.
    Shirinifard A; Gens JS; Zaitlen BL; Popławski NJ; Swat M; Glazier JA
    PLoS One; 2009 Oct; 4(10):e7190. PubMed ID: 19834621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale Modeling of Glioblastoma Suggests that the Partial Disruption of Vessel/Cancer Stem Cell Crosstalk Can Promote Tumor Regression Without Increasing Invasiveness.
    Yan H; Romero-Lopez M; Frieboes HB; Hughes CC; Lowengrub JS
    IEEE Trans Biomed Eng; 2017 Mar; 64(3):538-548. PubMed ID: 27723576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale modelling and nonlinear simulation of vascular tumour growth.
    Macklin P; McDougall S; Anderson AR; Chaplain MA; Cristini V; Lowengrub J
    J Math Biol; 2009 Apr; 58(4-5):765-98. PubMed ID: 18781303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma.
    Levine HA; Pamuk S; Sleeman BD; Nilsen-Hamilton M
    Bull Math Biol; 2001 Sep; 63(5):801-63. PubMed ID: 11565406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pivotal role of angiogenesis in a multi-scale modeling of tumor growth exhibiting the avascular and vascular phases.
    Salavati H; Soltani M; Amanpour S
    Microvasc Res; 2018 Sep; 119():105-116. PubMed ID: 29742454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid model of tumor growth and angiogenesis: In silico experiments.
    Phillips CM; Lima EABF; Woodall RT; Brock A; Yankeelov TE
    PLoS One; 2020; 15(4):e0231137. PubMed ID: 32275674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The critical role of vascular endothelial growth factor in tumor angiogenesis.
    Amini A; Masoumi Moghaddam S; Morris DL; Pourgholami MH
    Curr Cancer Drug Targets; 2012 Jan; 12(1):23-43. PubMed ID: 22111836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 3-D model of tumor progression based on complex automata driven by particle dynamics.
    Wcisło R; Dzwinel W; Yuen DA; Dudek AZ
    J Mol Model; 2009 Dec; 15(12):1517-39. PubMed ID: 19466466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of anti-angiogenic and anti-maturation therapy on vascular tumor growth.
    Arakelyan L; Vainstein V; Agur Z
    Angiogenesis; 2002; 5(3):203-14. PubMed ID: 12831061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational models of VEGF-associated angiogenic processes in cancer.
    Stefanini MO; Qutub AA; Mac Gabhann F; Popel AS
    Math Med Biol; 2012 Mar; 29(1):85-94. PubMed ID: 21266494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear studies of tumor morphological stability using a two-fluid flow model.
    Pham K; Turian E; Liu K; Li S; Lowengrub J
    J Math Biol; 2018 Sep; 77(3):671-709. PubMed ID: 29546457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method.
    Zheng X; Wise SM; Cristini V
    Bull Math Biol; 2005 Mar; 67(2):211-59. PubMed ID: 15710180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mathematical modelling of tumour angiogenesis and invasion.
    Chaplain MA
    Acta Biotheor; 1995 Dec; 43(4):387-402. PubMed ID: 8919350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid multiscale model for investigating tumor angiogenesis and its response to cell-based therapy.
    Hendrata M; Sudiono J
    In Silico Biol; 2019; 13(1-2):1-20. PubMed ID: 29226860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A voxel-based multiscale model to simulate the radiation response of hypoxic tumors.
    Espinoza I; Peschke P; Karger CP
    Med Phys; 2015 Jan; 42(1):90-102. PubMed ID: 25563250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apj
    Zhao H; Tian X; He L; Li Y; Pu W; Liu Q; Tang J; Wu J; Cheng X; Liu Y; Zhou Q; Tan Z; Bai F; Xu F; Smart N; Zhou B
    Cell Rep; 2018 Oct; 25(5):1241-1254.e5. PubMed ID: 30380415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.