These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 34161514)
41. [Change trend of vegetation cover in Beijing metropolitan region before and after the 2008 Olympics]. Sun XP; Wang TM; Wu JG; Ge JP Ying Yong Sheng Tai Xue Bao; 2012 Nov; 23(11):3133-40. PubMed ID: 23431801 [TBL] [Abstract][Full Text] [Related]
42. Association analysis between spatiotemporal variation of vegetation greenness and precipitation/temperature in the Yangtze River Basin (China). Cui L; Wang L; Singh RP; Lai Z; Jiang L; Yao R Environ Sci Pollut Res Int; 2018 Aug; 25(22):21867-21878. PubMed ID: 29796889 [TBL] [Abstract][Full Text] [Related]
43. Generating Daily Synthetic Landsat Imagery by Combining Landsat and MODIS Data. Wu M; Huang W; Niu Z; Wang C Sensors (Basel); 2015 Sep; 15(9):24002-25. PubMed ID: 26393607 [TBL] [Abstract][Full Text] [Related]
44. Monitoring tropical forest succession at landscape scales despite uncertainty in Landsat time series. Caughlin TT; Barber C; Asner GP; Glenn NF; Bohlman SA; Wilson CH Ecol Appl; 2021 Jan; 31(1):e02208. PubMed ID: 32627902 [TBL] [Abstract][Full Text] [Related]
45. Scene selection and the use of NASA's global orthorectified Landsat dataset for land cover and land use change monitoring. Tatem AJ; Nayar A; Hay SI Int J Remote Sens; 2007 Feb; 27(14):3073-3078. PubMed ID: 21994469 [TBL] [Abstract][Full Text] [Related]
46. Integrating in-situ, Landsat, and MODIS data for mapping in Southern African savannas: experiences of LCCS-based land-cover mapping in the Kalahari in Namibia. Hüttich C; Herold M; Strohbach BJ; Dech S Environ Monit Assess; 2011 May; 176(1-4):531-47. PubMed ID: 20635199 [TBL] [Abstract][Full Text] [Related]
47. [Fractional vegetation cover change based on vegetation seasonal variation correction: A case in Lianjiang County, Fujian Province, China]. Yang HT; Xu HQ; Shi TT; Chen SM Ying Yong Sheng Tai Xue Bao; 2019 Jan; 30(1):285-291. PubMed ID: 30907551 [TBL] [Abstract][Full Text] [Related]
48. Temporal Stability of Vegetation Cover across the Loess Plateau Based on GIMMS during 1982-2013. Zhang C; Guo S; Guan Y; Cai D; Bian X Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33466482 [TBL] [Abstract][Full Text] [Related]
49. Vegetation cover change and its response to climate extremes in the Yellow River Basin. Liu J; Wei L; Zheng Z; Du J Sci Total Environ; 2023 Dec; 905():167366. PubMed ID: 37758141 [TBL] [Abstract][Full Text] [Related]
50. Drought risk mapping of south-western state in the Indian peninsula - A web based application. Gopinath G; Ambili GK; Gregory SJ; Anusha CK J Environ Manage; 2015 Sep; 161():453-459. PubMed ID: 25560658 [TBL] [Abstract][Full Text] [Related]
51. Assessing Seasonal and Inter-Annual Variations of Lake Surface Areas in Mongolia during 2000-2011 Using Minimum Composite MODIS NDVI. Kang S; Hong SY PLoS One; 2016; 11(3):e0151395. PubMed ID: 27007233 [TBL] [Abstract][Full Text] [Related]
52. Spatial and temporal variations of land use and vegetation cover in Southwest China from 2000 to 2015. Ma HY; Zhang LL; Wei XQ; Shi TT; Chen TX Ying Yong Sheng Tai Xue Bao; 2021 Feb; 32(2):618-628. PubMed ID: 33650372 [TBL] [Abstract][Full Text] [Related]
53. Modelling the productivity of Siberian larch forests from Landsat NDVI time series in fragmented forest stands of the Mongolian forest-steppe. Erasmi S; Klinge M; Dulamsuren C; Schneider F; Hauck M Environ Monit Assess; 2021 Mar; 193(4):200. PubMed ID: 33738573 [TBL] [Abstract][Full Text] [Related]
54. Integrating Surface-Based Temperature and Vegetation Abundance Estimates into Land Cover Classifications for Conservation Efforts in Savanna Landscapes. Herrero HV; Southworth J; Bunting E; Kohlhaas RR; Child B Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31394848 [TBL] [Abstract][Full Text] [Related]
55. Correlation between normalized difference vegetation index and malaria in a subtropical rain forest undergoing rapid anthropogenic alteration. Wayant NM; Maldonado D; Rojas de Arias A; Cousiño B; Goodin DG Geospat Health; 2010 May; 4(2):179-90. PubMed ID: 20503187 [TBL] [Abstract][Full Text] [Related]
56. Characterizing spatiotemporal non-stationarity in vegetation dynamics in China using MODIS EVI dataset. Qiu B; Zeng C; Tang Z; Chen C Environ Monit Assess; 2013 Nov; 185(11):9019-35. PubMed ID: 23649474 [TBL] [Abstract][Full Text] [Related]
57. Characterization of the main land processes occurring in Europe (2000-2018) through a MODIS NDVI seasonal parameter-based procedure. Ramírez-Cuesta JM; Minacapilli M; Motisi A; Consoli S; Intrigliolo DS; Vanella D Sci Total Environ; 2021 Dec; 799():149346. PubMed ID: 34365259 [TBL] [Abstract][Full Text] [Related]
58. An efficient approach for pixel decomposition to increase the spatial resolution of land surface temperature images from MODIS thermal infrared band data. Wang F; Qin Z; Li W; Song C; Karnieli A; Zhao S Sensors (Basel); 2014 Dec; 15(1):304-30. PubMed ID: 25609048 [TBL] [Abstract][Full Text] [Related]
59. Estimation of different data compositions for early-season crop type classification. Hao P; Wu M; Niu Z; Wang L; Zhan Y PeerJ; 2018; 6():e4834. PubMed ID: 29868265 [TBL] [Abstract][Full Text] [Related]
60. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data. Zhang G; Xiao X; Dong J; Kou W; Jin C; Qin Y; Zhou Y; Wang J; Menarguez MA; Biradar C ISPRS J Photogramm Remote Sens; 2015 Aug; 106():157-171. PubMed ID: 27667901 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]