These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 341616)

  • 1. [Principles for optimizing and guaging several processes in the technology of vaccine production. II. Modeling processes of thermal inactivation of microorganisms].
    Matveev VE; Tarasenko VM; Vorob'ev AA
    Zh Mikrobiol Epidemiol Immunobiol; 1977 Dec; (12):77-83. PubMed ID: 341616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Principles for optimizing and guaging several processes in the technology of vaccine production. I. Several problems in guaging and optimizing thermal sterilization of fluids].
    Matveev VE; Tarasenko VM; Vorob'ev AA
    Zh Mikrobiol Epidemiol Immunobiol; 1977 Oct; (10):33-7. PubMed ID: 919920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Principles of optimization and scaling of certain processes in the vaccine production technology. 3. Method of determination of the optimal method of thermal sterilization of sugar solutions].
    Matveev VE; Tarasenko VM; Vorob'ev AA; Smirnov EV
    Zh Mikrobiol Epidemiol Immunobiol; 1978 Jan; (1):118-23. PubMed ID: 629124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model for the thermal inactivation of micro-organisms.
    Lambert RJ
    J Appl Microbiol; 2003; 95(3):500-7. PubMed ID: 12911698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Quantitative patterns of the thermal inactivation of microorganisms as a basis for obtaining high-quality vaccinal preparations].
    Dzhindoian LS; Tarasov MIu
    Zh Mikrobiol Epidemiol Immunobiol; 1989 Mar; (3):59-63. PubMed ID: 2741607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Principles for optimizing and gauging certain processes in vaccine production technology. V. Complex approach to gauging processes involved in assuring aseptic conditions in incubators].
    Matveev VE; Vorob'ev AA
    Zh Mikrobiol Epidemiol Immunobiol; 1980 Oct; (10):17-23. PubMed ID: 7003993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing thermal and radiation effects for bacterial inactivation.
    Reynolds MC; Garst DM
    Space Life Sci; 1970 Dec; 2(3):394-9. PubMed ID: 5000751
    [No Abstract]   [Full Text] [Related]  

  • 8. C. botulinum inactivation kinetics implemented in a computational model of a high-pressure sterilization process.
    Juliano P; Knoerzer K; Fryer PJ; Versteeg C
    Biotechnol Prog; 2009; 25(1):163-75. PubMed ID: 19197999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probabilistic exposure assessment model to estimate aseptic-UHT product failure rate.
    Pujol L; Albert I; Magras C; Johnson NB; Membré JM
    Int J Food Microbiol; 2015 Jan; 192():124-41. PubMed ID: 25440556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model.
    Mafart P; Couvert O; Gaillard S; Leguerinel I
    Int J Food Microbiol; 2002 Jan; 72(1-2):107-13. PubMed ID: 11843401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Risk analysis of the thermal sterilization process. Analysis of factors affecting the thermal resistance of microorganisms.
    Akterian SG; Fernandez PS; Hendrickx ME; Tobback PP; Periago PM; Martinez A
    Int J Food Microbiol; 1999 Mar; 47(1-2):51-7. PubMed ID: 10357273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discussion of the Z-value to use in calculating the F0-value for high-temperature sterilization processes.
    Pflug IJ
    PDA J Pharm Sci Technol; 1996; 50(1):51-4. PubMed ID: 8846059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The heat resistance of bacterial spores at various water activities.
    Murrell WG; Scott WJ
    J Gen Microbiol; 1966 Jun; 43(3):411-25. PubMed ID: 4960405
    [No Abstract]   [Full Text] [Related]  

  • 14. Thermal processing of foods, a retrospective, Part I: Uncertainties in thermal processing and statistical analysis.
    Ramesh MN; Prapulla SG; Kumar MA; Mahadevaiah M
    Adv Appl Microbiol; 1997; 44():287-314. PubMed ID: 9311110
    [No Abstract]   [Full Text] [Related]  

  • 15. Generating microbial survival curves during thermal processing in real time.
    Peleg M; Normand MD; Corradini MG
    J Appl Microbiol; 2005; 98(2):406-17. PubMed ID: 15659195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing Patient Safety by Closing the Sterile Production Gap-Part 3-Moist Heat Resistance of Bioburden.
    Agalloco JP
    PDA J Pharm Sci Technol; 2017; 71(4):274-278. PubMed ID: 28416646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Risk assessment of proteolytic Clostridium botulinum in canned foie gras.
    Membré JM; Diao M; Thorin C; Cordier G; Zuber F; André S
    Int J Food Microbiol; 2015 Oct; 210():62-72. PubMed ID: 26093992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From time temperature integrator kinetics to time temperature integrator tolerance levels: heat-treated milk.
    Claeys WL; Smout C; Van Loey AM; Hendrickx ME
    Biotechnol Prog; 2004; 20(1):1-12. PubMed ID: 14763817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of Bacillus spores inoculated in milk by Ultra High Pressure Homogenization.
    Amador Espejo GG; Hernández-Herrero MM; Juan B; Trujillo AJ
    Food Microbiol; 2014 Dec; 44():204-10. PubMed ID: 25084664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some microbiological aspects of inedible rendering processes.
    Hansen PI; Olgaard K
    Zentralbl Bakteriol Mikrobiol Hyg B; 1984 Dec; 180(1):3-20. PubMed ID: 6441385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.