These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 34161744)

  • 1. Increasing the gradient of energetic cost does not initiate adaptation in human walking.
    Simha SN; Wong JD; Selinger JC; Abram SJ; Donelan JM
    J Neurophysiol; 2021 Aug; 126(2):440-450. PubMed ID: 34161744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is natural variability in gait sufficient to initiate spontaneous energy optimization in human walking?
    Wong JD; Selinger JC; Donelan JM
    J Neurophysiol; 2019 May; 121(5):1848-1855. PubMed ID: 30864867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Mechatronic System for Studying Energy Optimization During Walking.
    Simha SN; Wong JD; Selinger JC; Donelan JM
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1416-1425. PubMed ID: 31107655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy optimization is a major objective in the real-time control of step width in human walking.
    Abram SJ; Selinger JC; Donelan JM
    J Biomech; 2019 Jun; 91():85-91. PubMed ID: 31151794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using asymmetry to your advantage: learning to acquire and accept external assistance during prolonged split-belt walking.
    Sánchez N; Simha SN; Donelan JM; Finley JM
    J Neurophysiol; 2021 Feb; 125(2):344-357. PubMed ID: 33296612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of blood oxygen and carbon dioxide sensing to the energetic optimization of human walking.
    Wong JD; O'Connor SM; Selinger JC; Donelan JM
    J Neurophysiol; 2017 Aug; 118(2):1425-1433. PubMed ID: 28637813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Step time asymmetry but not step length asymmetry is adapted to optimize energy cost of split-belt treadmill walking.
    Stenum J; Choi JT
    J Physiol; 2020 Sep; 598(18):4063-4078. PubMed ID: 32662881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How humans initiate energy optimization and converge on their optimal gaits.
    Selinger JC; Wong JD; Simha SN; Donelan JM
    J Exp Biol; 2019 Oct; 222(Pt 19):. PubMed ID: 31488623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Humans Can Continuously Optimize Energetic Cost during Walking.
    Selinger JC; O'Connor SM; Wong JD; Donelan JM
    Curr Biol; 2015 Sep; 25(18):2452-6. PubMed ID: 26365256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General variability leads to specific adaptation toward optimal movement policies.
    Abram SJ; Poggensee KL; Sánchez N; Simha SN; Finley JM; Collins SH; Donelan JM
    Curr Biol; 2022 May; 32(10):2222-2232.e5. PubMed ID: 35537453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of lateral stabilization on walking in young and old adults.
    Dean JC; Alexander NB; Kuo AD
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1919-26. PubMed ID: 18018687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetic cost of walking with increased step variability.
    O'Connor SM; Xu HZ; Kuo AD
    Gait Posture; 2012 May; 36(1):102-7. PubMed ID: 22459093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning to be economical: the energy cost of walking tracks motor adaptation.
    Finley JM; Bastian AJ; Gottschall JS
    J Physiol; 2013 Feb; 591(4):1081-95. PubMed ID: 23247109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altering attention to split-belt walking increases the generalization of motor memories across walking contexts.
    Mariscal DM; Iturralde PA; Torres-Oviedo G
    J Neurophysiol; 2020 May; 123(5):1838-1848. PubMed ID: 32233897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constrained optimization in human walking: cost minimization and gait plasticity.
    Bertram JE
    J Exp Biol; 2005 Mar; 208(Pt 6):979-91. PubMed ID: 15767300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compliant walking appears metabolically advantageous at extreme step lengths.
    Kim J; Bertram JEA
    Gait Posture; 2018 Jul; 64():84-89. PubMed ID: 29883939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locomotor adaptation and locomotor adaptive learning in Parkinson's disease and normal aging.
    Roemmich RT; Nocera JR; Stegemöller EL; Hassan A; Okun MS; Hass CJ
    Clin Neurophysiol; 2014 Feb; 125(2):313-9. PubMed ID: 23916406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cost of walking downhill: is the preferred gait energetically optimal?
    Hunter LC; Hendrix EC; Dean JC
    J Biomech; 2010 Jul; 43(10):1910-5. PubMed ID: 20399434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing the effects of adapting to a weight on one leg during treadmill and overground walking: A pilot study.
    Gama GL; Savin DN; Keenan T; Waller SM; Whitall J
    Gait Posture; 2018 Jan; 59():35-39. PubMed ID: 28987764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait in adolescent idiopathic scoliosis: energy cost analysis.
    Mahaudens P; Detrembleur C; Mousny M; Banse X
    Eur Spine J; 2009 Aug; 18(8):1160-8. PubMed ID: 19390877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.