These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 34161756)
1. Structure-guided design of a perampanel-derived pharmacophore targeting the SARS-CoV-2 main protease. Deshmukh MG; Ippolito JA; Zhang CH; Stone EA; Reilly RA; Miller SJ; Jorgensen WL; Anderson KS Structure; 2021 Aug; 29(8):823-833.e5. PubMed ID: 34161756 [TBL] [Abstract][Full Text] [Related]
2. Crystal Structure of SARS-CoV-2 Main Protease in Complex with the Non-Covalent Inhibitor ML188. Lockbaum GJ; Reyes AC; Lee JM; Tilvawala R; Nalivaika EA; Ali A; Kurt Yilmaz N; Thompson PR; Schiffer CA Viruses; 2021 Jan; 13(2):. PubMed ID: 33503819 [TBL] [Abstract][Full Text] [Related]
3. Crystal structures of coronaviral main proteases in complex with the non-covalent inhibitor X77. Jiang H; Li W; Zhou X; Zhang J; Li J Int J Biol Macromol; 2024 Sep; 276(Pt 1):133706. PubMed ID: 38981557 [TBL] [Abstract][Full Text] [Related]
4. N-Terminal Finger Stabilizes the S1 Pocket for the Reversible Feline Drug GC376 in the SARS-CoV-2 M Arutyunova E; Khan MB; Fischer C; Lu J; Lamer T; Vuong W; van Belkum MJ; McKay RT; Tyrrell DL; Vederas JC; Young HS; Lemieux MJ J Mol Biol; 2021 Jun; 433(13):167003. PubMed ID: 33895266 [TBL] [Abstract][Full Text] [Related]
5. Design of inhibitors of SARS-CoV-2 papain-like protease deriving from GRL0617: Structure-activity relationships. Kerti L; Frecer V Bioorg Med Chem; 2024 Nov; 113():117909. PubMed ID: 39288705 [TBL] [Abstract][Full Text] [Related]
6. Exploring epigenetic drugs as potential inhibitors of SARS-CoV-2 main protease: a docking and MD simulation study. Uzuner U; Akkus E; Kocak A; Çelik Uzuner S J Biomol Struct Dyn; 2024 Aug; 42(13):6892-6903. PubMed ID: 37458994 [TBL] [Abstract][Full Text] [Related]
7. Discovery of SARS-CoV-2 3CL Wang Y; Xu B; Ma S; Wang H; Shang L; Zhu C; Ye S Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216507 [TBL] [Abstract][Full Text] [Related]
8. De novo design of SARS-CoV-2 main protease inhibitors with characteristic binding modes. Zhu Y; Meng J; Feng B; Zhao Y; Zang Y; Lu L; Su M; Yang Q; Zhang Q; Feng L; Zhao J; Shao M; Ma Y; Yang X; Yang H; Li J; Jiang X; Rao Z Structure; 2024 Sep; 32(9):1327-1334.e3. PubMed ID: 38925121 [TBL] [Abstract][Full Text] [Related]
9. In silico Study to Evaluate the Antiviral Activity of Novel Structures against 3C-like Protease of Novel Coronavirus (COVID-19) and SARS-CoV. Chunduru K; Sankhe R; Begum F; Sodum N; Kumar N; Kishore A; Shenoy RR; Rao CM; Saravu K Med Chem; 2021; 17(4):380-395. PubMed ID: 32720605 [TBL] [Abstract][Full Text] [Related]
10. Olive-Derived Triterpenes Suppress SARS COV-2 Main Protease: A Promising Scaffold for Future Therapeutics. Alhadrami HA; Sayed AM; Sharif AM; Azhar EI; Rateb ME Molecules; 2021 May; 26(9):. PubMed ID: 34062737 [TBL] [Abstract][Full Text] [Related]
11. SARS-CoV-2 M Rut W; Groborz K; Zhang L; Sun X; Zmudzinski M; Pawlik B; Wang X; Jochmans D; Neyts J; Młynarski W; Hilgenfeld R; Drag M Nat Chem Biol; 2021 Feb; 17(2):222-228. PubMed ID: 33093684 [TBL] [Abstract][Full Text] [Related]
12. N-acylbenzimidazoles as selective Acylators of the catalytic cystein of the coronavirus 3CL protease. Chaibi FZ; Brier L; Carré P; Landry V; Desmarets L; Tarricone A; Cantrelle FX; Moschidi D; Herledan A; Biela A; Bourgeois F; Ribes C; Ikherbane S; Malessan M; Dubuisson J; Belouzard S; Hanoulle X; Leroux F; Deprez B; Charton J Eur J Med Chem; 2024 Oct; 276():116707. PubMed ID: 39068863 [TBL] [Abstract][Full Text] [Related]
13. Structural basis of rosmarinic acid inhibitory mechanism on SARS-CoV-2 main protease. Li Q; Zhou X; Wang W; Xu Q; Wang Q; Li J Biochem Biophys Res Commun; 2024 Sep; 724():150230. PubMed ID: 38865813 [TBL] [Abstract][Full Text] [Related]
14. SARS-CoV-2 Main Protease Active Site Ligands in the Human Metabolome. Sardanelli AM; Isgrò C; Palese LL Molecules; 2021 Mar; 26(5):. PubMed ID: 33807773 [TBL] [Abstract][Full Text] [Related]
15. Recent Advances in SARS-CoV-2 Main Protease Inhibitors: From Nirmatrelvir to Future Perspectives. Citarella A; Dimasi A; Moi D; Passarella D; Scala A; Piperno A; Micale N Biomolecules; 2023 Sep; 13(9):. PubMed ID: 37759739 [TBL] [Abstract][Full Text] [Related]
16. Targeting SARS-CoV-2 Main Protease: A Computational Drug Repurposing Study. Baby K; Maity S; Mehta CH; Suresh A; Nayak UY; Nayak Y Arch Med Res; 2021 Jan; 52(1):38-47. PubMed ID: 32962867 [TBL] [Abstract][Full Text] [Related]
17. Combining Different Docking Engines and Consensus Strategies to Design and Validate Optimized Virtual Screening Protocols for the SARS-CoV-2 3CL Protease. Manelfi C; Gossen J; Gervasoni S; Talarico C; Albani S; Philipp BJ; Musiani F; Vistoli G; Rossetti G; Beccari AR; Pedretti A Molecules; 2021 Feb; 26(4):. PubMed ID: 33557115 [TBL] [Abstract][Full Text] [Related]
19. Identification of pyrogallol as a warhead in design of covalent inhibitors for the SARS-CoV-2 3CL protease. Su H; Yao S; Zhao W; Zhang Y; Liu J; Shao Q; Wang Q; Li M; Xie H; Shang W; Ke C; Feng L; Jiang X; Shen J; Xiao G; Jiang H; Zhang L; Ye Y; Xu Y Nat Commun; 2021 Jun; 12(1):3623. PubMed ID: 34131140 [TBL] [Abstract][Full Text] [Related]