These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34161772)

  • 1. Attractor competition enriches cortical dynamics during awakening from anesthesia.
    Tort-Colet N; Capone C; Sanchez-Vives MV; Mattia M
    Cell Rep; 2021 Jun; 35(12):109270. PubMed ID: 34161772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deterministic and Stochastic Components of Cortical Down States: Dynamics and Modulation.
    Camassa A; Galluzzi A; Mattia M; Sanchez-Vives MV
    J Neurosci; 2022 Dec; 42(50):9387-9400. PubMed ID: 36344267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow-wave oscillations in a corticothalamic model of sleep and wake.
    Zhao X; Kim JW; Robinson PA
    J Theor Biol; 2015 Apr; 370():93-102. PubMed ID: 25659479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of GABA
    Barbero-Castillo A; Mateos-Aparicio P; Dalla Porta L; Camassa A; Perez-Mendez L; Sanchez-Vives MV
    J Neurosci; 2021 Jun; 41(23):5029-5044. PubMed ID: 33906901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arousal transitions in sleep, wakefulness, and anesthesia are characterized by an orderly sequence of cortical events.
    Liu X; Yanagawa T; Leopold DA; Chang C; Ishida H; Fujii N; Duyn JH
    Neuroimage; 2015 Aug; 116():222-31. PubMed ID: 25865143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of cortical slow oscillations and complexity across anesthesia levels.
    Dasilva M; Camassa A; Navarro-Guzman A; Pazienti A; Perez-Mendez L; Zamora-López G; Mattia M; Sanchez-Vives MV
    Neuroimage; 2021 Jan; 224():117415. PubMed ID: 33011419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 7-12 Hz cortical oscillations: behavioral context and dynamics of prefrontal neuronal ensembles.
    Sakata S; Yamamori T; Sakurai Y
    Neuroscience; 2005; 134(4):1099-111. PubMed ID: 16019153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamics of cortical neuronal activity in the first minutes after spontaneous awakening in rats and mice.
    Vyazovskiy VV; Cui N; Rodriguez AV; Funk C; Cirelli C; Tononi G
    Sleep; 2014 Aug; 37(8):1337-47. PubMed ID: 25083014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Level of Consciousness Is Dissociable from Electroencephalographic Measures of Cortical Connectivity, Slow Oscillations, and Complexity.
    Pal D; Li D; Dean JG; Brito MA; Liu T; Fryzel AM; Hudetz AG; Mashour GA
    J Neurosci; 2020 Jan; 40(3):605-618. PubMed ID: 31776211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves.
    Esser SK; Hill SL; Tononi G
    Sleep; 2007 Dec; 30(12):1617-30. PubMed ID: 18246972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sleep/wake movement velocities, trajectories and micro-arousals during maturation in rats.
    Gradwohl G; Olini N; Huber R
    BMC Neurosci; 2017 Feb; 18(1):24. PubMed ID: 28173758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hippocampal and cortical communication around micro-arousals in slow-wave sleep.
    Dos Santos Lima GZ; Lobao-Soares B; Corso G; Belchior H; Lopes SR; de Lima Prado T; Nascimento G; França AC; Fontenele-Araújo J; Ivanov PC
    Sci Rep; 2019 Apr; 9(1):5876. PubMed ID: 30971751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complexity of cortical wave patterns of the wake mouse cortex.
    Liang Y; Liang J; Song C; Liu M; Knöpfel T; Gong P; Zhou C
    Nat Commun; 2023 Mar; 14(1):1434. PubMed ID: 36918572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholinergic blockage of network- and intrinsically generated slow oscillations promotes waking and REM sleep activity patterns in thalamic and cortical neurons.
    Steriade M
    Prog Brain Res; 1993; 98():345-55. PubMed ID: 8248523
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects and mechanisms of wakefulness on local cortical networks.
    Constantinople CM; Bruno RM
    Neuron; 2011 Mar; 69(6):1061-8. PubMed ID: 21435553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling sleep and wakefulness in the thalamocortical system.
    Hill S; Tononi G
    J Neurophysiol; 2005 Mar; 93(3):1671-98. PubMed ID: 15537811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic interaction of spindles and gamma activity during cortical slow oscillations and its modulation by subcortical afferents.
    Valencia M; Artieda J; Bolam JP; Mena-Segovia J
    PLoS One; 2013; 8(7):e67540. PubMed ID: 23844020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Variations of hypothalamic and cortical prostaglandins and monoamines reveal transitions in arousal states: microdialysis study in the rat].
    Nicolaidis S; Gerozissis K; Orosco M
    Rev Neurol (Paris); 2001 Nov; 157(11 Pt 2):S26-33. PubMed ID: 11924034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal Processing in the Visual Cortex of the Awake and Anesthetized Rat.
    Aasebø IEJ; Lepperød ME; Stavrinou M; Nøkkevangen S; Einevoll G; Hafting T; Fyhn M
    eNeuro; 2017; 4(4):. PubMed ID: 28791331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons.
    Pinault D; Vergnes M; Marescaux C
    Neuroscience; 2001; 105(1):181-201. PubMed ID: 11483311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.