These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 34161848)

  • 1. Machine learning for surgical time prediction.
    Martinez O; Martinez C; Parra CA; Rugeles S; Suarez DR
    Comput Methods Programs Biomed; 2021 Sep; 208():106220. PubMed ID: 34161848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method.
    Huang JC; Tsai YC; Wu PY; Lien YH; Chien CY; Kuo CF; Hung JF; Chen SC; Kuo CH
    Comput Methods Programs Biomed; 2020 Oct; 195():105536. PubMed ID: 32485511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving Operating Room Efficiency: Machine Learning Approach to Predict Case-Time Duration.
    Bartek MA; Saxena RC; Solomon S; Fong CT; Behara LD; Venigandla R; Velagapudi K; Lang JD; Nair BG
    J Am Coll Surg; 2019 Oct; 229(4):346-354.e3. PubMed ID: 31310851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning Can Improve Estimation of Surgical Case Duration: A Pilot Study.
    Tuwatananurak JP; Zadeh S; Xu X; Vacanti JA; Fulton WR; Ehrenfeld JM; Urman RD
    J Med Syst; 2019 Jan; 43(3):44. PubMed ID: 30656433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Machine Learning Approach to Predicting Case Duration for Robot-Assisted Surgery.
    Zhao B; Waterman RS; Urman RD; Gabriel RA
    J Med Syst; 2019 Jan; 43(2):32. PubMed ID: 30612192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of monthly dry days with machine learning algorithms: a case study in Northern Bangladesh.
    Osmani SA; Kim JS; Jun C; Sumon MW; Baik J; Lee J
    Sci Rep; 2022 Nov; 12(1):19717. PubMed ID: 36385262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gaming behavior and brain activation using functional near-infrared spectroscopy, Iowa gambling task, and machine learning techniques.
    Kornev D; Nwoji S; Sadeghian R; Esmaili Sardari S; Dashtestani H; He Q; Gandjbakhche A; Aram S
    Brain Behav; 2022 Apr; 12(4):e2536. PubMed ID: 35290722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Integrated Approach of Machine Learning and Systems Thinking for Waiting Time Prediction in an Emergency Department.
    Kuo YH; Chan NB; Leung JMY; Meng H; So AM; Tsoi KKF; Graham CA
    Int J Med Inform; 2020 Jul; 139():104143. PubMed ID: 32330853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consultation length and no-show prediction for improving appointment scheduling efficiency at a cardiology clinic: A data analytics approach.
    Srinivas S; Salah H
    Int J Med Inform; 2021 Jan; 145():104290. PubMed ID: 33099184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aligning text mining and machine learning algorithms with best practices for study selection in systematic literature reviews.
    Popoff E; Besada M; Jansen JP; Cope S; Kanters S
    Syst Rev; 2020 Dec; 9(1):293. PubMed ID: 33308292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Feature Extraction Methods for Prediction of 30-Day Hospital Readmissions.
    Sumner J; Alaeddini A
    Methods Inf Med; 2019 Dec; 58(6):213-221. PubMed ID: 32349155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning algorithms applied to a prediction of personal overall thermal comfort using skin temperatures and occupants' heating behavior.
    Katić K; Li R; Zeiler W
    Appl Ergon; 2020 May; 85():103078. PubMed ID: 32174366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Machine Learning to Predict Operating Room Case Duration: A Case Study in Otolaryngology.
    Miller LE; Goedicke W; Crowson MG; Rathi VK; Naunheim MR; Agarwala AV
    Otolaryngol Head Neck Surg; 2023 Feb; 168(2):241-247. PubMed ID: 35133897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A land use regression model using machine learning and locally developed low cost particulate matter sensors in Uganda.
    Coker ES; Amegah AK; Mwebaze E; Ssematimba J; Bainomugisha E
    Environ Res; 2021 Aug; 199():111352. PubMed ID: 34043968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Personalized Random Forest Algorithm for Clinical Outcome Prediction.
    Johnson A; Cooper GF; Visweswaran S
    Stud Health Technol Inform; 2022 Jun; 290():248-252. PubMed ID: 35673011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Analysis of Major Machine-Learning-Based Path Loss Models for Enclosed Indoor Channels.
    Elmezughi MK; Salih O; Afullo TJ; Duffy KJ
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying predictive factors for neuropathic pain after breast cancer surgery using machine learning.
    Juwara L; Arora N; Gornitsky M; Saha-Chaudhuri P; Velly AM
    Int J Med Inform; 2020 Sep; 141():104170. PubMed ID: 32544823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of lung cancer patient survival via supervised machine learning classification techniques.
    Lynch CM; Abdollahi B; Fuqua JD; de Carlo AR; Bartholomai JA; Balgemann RN; van Berkel VH; Frieboes HB
    Int J Med Inform; 2017 Dec; 108():1-8. PubMed ID: 29132615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting diabetic retinopathy and identifying interpretable biomedical features using machine learning algorithms.
    Tsao HY; Chan PY; Su EC
    BMC Bioinformatics; 2018 Aug; 19(Suppl 9):283. PubMed ID: 30367589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine-learning prediction of adolescent alcohol use: a cross-study, cross-cultural validation.
    Afzali MH; Sunderland M; Stewart S; Masse B; Seguin J; Newton N; Teesson M; Conrod P
    Addiction; 2019 Apr; 114(4):662-671. PubMed ID: 30461117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.