These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34161911)

  • 1. Effect of protein-fatty acid interactions on the formation of starch-lipid-protein complexes.
    Chen W; Chao C; Yu J; Copeland L; Wang S; Wang S
    Food Chem; 2021 Dec; 364():130390. PubMed ID: 34161911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of cooling rate and complexing temperature on the formation of starch-lauric acid-β-lactoglobulin complexes.
    Niu B; Chao C; Cai J; Yu J; Wang S; Wang S
    Carbohydr Polym; 2021 Feb; 253():117301. PubMed ID: 33278955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the Formation and Structures of Starch-Protein-Lipid Complexes.
    Wang S; Zheng M; Yu J; Wang S; Copeland L
    J Agric Food Chem; 2017 Mar; 65(9):1960-1966. PubMed ID: 28201873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ultrasound-pretreated starch on the formation, structure and digestibility of starch ternary complexes from lauric acid and β-lactoglobulin.
    Niu B; Qin Y; Xie X; Zhang B; Cheng L; Yan Y
    Ultrason Sonochem; 2024 Jul; 109():106990. PubMed ID: 39018891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prior interaction of protein and lipid affects the formation of ternary complexes with starch.
    Li X; Wang C; Chao C; Yu J; Copeland L; Liu Y; Wang S
    Food Chem; 2023 Nov; 426():136500. PubMed ID: 37329797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Debranching on the Formation of Maize Starch-Lauric Acid-β-Lactoglobulin Complexes.
    Cai J; Chao C; Niu B; Yu J; Copeland L; Wang S; Wang S
    J Agric Food Chem; 2021 Aug; 69(32):9086-9093. PubMed ID: 33449697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward a Better Understanding of Starch-Monoglyceride-Protein Interactions.
    Chao C; Cai J; Yu J; Copeland L; Wang S; Wang S
    J Agric Food Chem; 2018 Dec; 66(50):13253-13259. PubMed ID: 30485089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms Underlying the Formation of Amylose- Lauric Acid-β-Lactoglobulin Complexes: Experimental and Molecular Dynamics Studies.
    Wang C; Chao C; Yu J; Copeland L; Huang Y; Wang S
    J Agric Food Chem; 2022 Aug; 70(34):10635-10643. PubMed ID: 35994717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of NaCl on the formation of starch-lipid complexes.
    Niu B; Chao C; Cai J; Yan Y; Copeland L; Wang S; Wang S
    Food Chem; 2019 Nov; 299():125133. PubMed ID: 31323441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Key structural factors that determine the in vitro enzymatic digestibility of amylose-complexes.
    Sun R; Chao C; Wang C; Yu J; Copeland L; Wang S
    Carbohydr Polym; 2024 Oct; 342():122383. PubMed ID: 39048225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complexes between linoleate and native or aggregated β-lactoglobulin: interaction parameters and in vitro cytotoxic effect.
    Le Maux S; Bouhallab S; Giblin L; Brodkorb A; Croguennec T
    Food Chem; 2013 Dec; 141(3):2305-13. PubMed ID: 23870962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic and hydrophobic interactions governing the interaction and binding of beta-lactoglobulin to membranes.
    Zhang X; Ge N; Keiderling TA
    Biochemistry; 2007 May; 46(17):5252-60. PubMed ID: 17407268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of heating at neutral and acid pH on the structure of beta-lactoglobulin A revealed by differential scanning calorimetry and circular dichroism spectroscopy.
    Wada R; Fujita Y; Kitabatake N
    Biochim Biophys Acta; 2006 Jun; 1760(6):841-7. PubMed ID: 16545525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid-induced conformational transitions of beta-lactoglobulin.
    Zhang X; Keiderling TA
    Biochemistry; 2006 Jul; 45(27):8444-52. PubMed ID: 16819842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equilibrium and dynamic spectroscopic studies of the interaction of monomeric β-lactoglobulin with lipid vesicles at low pH.
    Zhang G; Keiderling TA
    Biochemistry; 2014 May; 53(19):3079-87. PubMed ID: 24773452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisiting the Formation of Starch-Monoglyceride-Protein Complexes: Effects of Octenyl Succinic Anhydride Modification.
    Wang J; Yu J; Copeland L; Wang S
    J Agric Food Chem; 2023 Dec; 71(48):19033-19044. PubMed ID: 37997356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of binding affinities and characterization of β-lactoglobulin and λ-carrageenan as a function of pH.
    Wang L; Yue X; Wang J; Bai L; Li Y
    J Food Biochem; 2019 Dec; 43(12):e13042. PubMed ID: 31502281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms underlying the formation of starch-lipid complexes during simulated food processing: A dynamic structural analysis.
    Chao C; Huang S; Yu J; Copeland L; Wang S; Wang S
    Carbohydr Polym; 2020 Sep; 244():116464. PubMed ID: 32536390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Chain Length and Degree of Unsaturation of Fatty Acids on Structure and in Vitro Digestibility of Starch-Protein-Fatty Acid Complexes.
    Zheng M; Chao C; Yu J; Copeland L; Wang S; Wang S
    J Agric Food Chem; 2018 Feb; 66(8):1872-1880. PubMed ID: 29429340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and dynamics of β-lactoglobulin in complex with dodecyl sulfate and laurate: a molecular dynamics study.
    Bello M; Gutiérrez G; García-Hernández E
    Biophys Chem; 2012 May; 165-166():79-86. PubMed ID: 22498503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.