These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 34162070)
1. Generating accurate in silico predictions of acute aquatic toxicity for a range of organic chemicals: Towards similarity-based machine learning methods. Gajewicz-Skretna A; Furuhama A; Yamamoto H; Suzuki N Chemosphere; 2021 Oct; 280():130681. PubMed ID: 34162070 [TBL] [Abstract][Full Text] [Related]
2. Aquatic toxicity (Pre)screening strategy for structurally diverse chemicals: global or local classification tree models? Gajewicz-Skretna A; Gromelski M; Wyrzykowska E; Furuhama A; Yamamoto H; Suzuki N Ecotoxicol Environ Saf; 2021 Jan; 208():111738. PubMed ID: 33396066 [TBL] [Abstract][Full Text] [Related]
3. QSAR modelling study of the bioconcentration factor and toxicity of organic compounds to aquatic organisms using machine learning and ensemble methods. Ai H; Wu X; Zhang L; Qi M; Zhao Y; Zhao Q; Zhao J; Liu H Ecotoxicol Environ Saf; 2019 Sep; 179():71-78. PubMed ID: 31026752 [TBL] [Abstract][Full Text] [Related]
4. Quantitative multi-species toxicity modeling: Does a multi-species, machine learning model provide better performance than a single-species model for the evaluation of acute aquatic toxicity by organic pollutants? Gajewicz-Skretna A; Wyrzykowska E; Gromelski M Sci Total Environ; 2023 Feb; 861():160590. PubMed ID: 36473653 [TBL] [Abstract][Full Text] [Related]
5. Development of classification models for predicting chronic toxicity of chemicals to Daphnia magna and Pseudokirchneriella subcapitata. Ding F; Wang Z; Yang X; Shi L; Liu J; Chen G SAR QSAR Environ Res; 2019 Jan; 30(1):39-50. PubMed ID: 30477347 [TBL] [Abstract][Full Text] [Related]
6. Effect of the structural factors of organic compounds on the acute toxicity toward Tinkov OV; Grigorev VY; Razdolsky AN; Grigoryeva LD; Dearden JC SAR QSAR Environ Res; 2020 Aug; 31(8):615-641. PubMed ID: 32713201 [TBL] [Abstract][Full Text] [Related]
7. Exploring the role of quantum chemical descriptors in modeling acute toxicity of diverse chemicals to Daphnia magna. Reenu ; Vikas J Mol Graph Model; 2015 Sep; 61():89-101. PubMed ID: 26188798 [TBL] [Abstract][Full Text] [Related]
8. Safer and greener chemicals for the aquatic ecosystem: Chemometric modeling of the prolonged and chronic aquatic toxicity of chemicals on Oryzias latipes. Kumar A; Ojha PK; Roy K Aquat Toxicol; 2024 Aug; 273():106985. PubMed ID: 38875952 [TBL] [Abstract][Full Text] [Related]
9. Predicting the acute ecotoxicity of chemical substances by machine learning using graph theory. Takata M; Lin BL; Xue M; Zushi Y; Terada A; Hosomi M Chemosphere; 2020 Jan; 238():124604. PubMed ID: 31450113 [TBL] [Abstract][Full Text] [Related]
10. Exploring the potential of in silico machine learning tools for the prediction of acute Daphnia magna nanotoxicity. Balraadjsing S; Peijnenburg WJGM; Vijver MG Chemosphere; 2022 Nov; 307(Pt 2):135930. PubMed ID: 35961453 [TBL] [Abstract][Full Text] [Related]
11. Development of models to predict fish early-life stage toxicity from acute Daphnia magna toxicity Furuhama A; Hayashi TI; Yamamoto H SAR QSAR Environ Res; 2018 Sep; 29(9):725-742. PubMed ID: 30182748 [TBL] [Abstract][Full Text] [Related]
12. Comparison of seven in silico tools for evaluating of daphnia and fish acute toxicity: case study on Chinese Priority Controlled Chemicals and new chemicals. Zhou L; Fan D; Yin W; Gu W; Wang Z; Liu J; Xu Y; Shi L; Liu M; Ji G BMC Bioinformatics; 2021 Mar; 22(1):151. PubMed ID: 33761866 [TBL] [Abstract][Full Text] [Related]
13. Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: Ranking and prioritization of the DrugBank database compounds. Khan K; Benfenati E; Roy K Ecotoxicol Environ Saf; 2019 Jan; 168():287-297. PubMed ID: 30390527 [TBL] [Abstract][Full Text] [Related]
14. Global classification models for predicting acute toxicity of chemicals towards Daphnia magna. Yu X Environ Res; 2023 Dec; 238(Pt 2):117239. PubMed ID: 37778597 [TBL] [Abstract][Full Text] [Related]
15. Prediction of acute aquatic toxicity toward Daphnia magna by using the GA-kNN method. Cassotti M; Ballabio D; Consonni V; Mauri A; Tetko IV; Todeschini R Altern Lab Anim; 2014 Mar; 42(1):31-41. PubMed ID: 24773486 [TBL] [Abstract][Full Text] [Related]
16. Validation of a QSAR model for acute toxicity. Pavan M; Netzeva TI; Worth AP SAR QSAR Environ Res; 2006 Apr; 17(2):147-71. PubMed ID: 16644555 [TBL] [Abstract][Full Text] [Related]
17. Ecotoxicological QSAR modeling of organic compounds against fish: Application of fragment based descriptors in feature analysis. Khan K; Baderna D; Cappelli C; Toma C; Lombardo A; Roy K; Benfenati E Aquat Toxicol; 2019 Jul; 212():162-174. PubMed ID: 31128417 [TBL] [Abstract][Full Text] [Related]
18. Hazard of pharmaceuticals for aquatic environment: Prioritization by structural approaches and prediction of ecotoxicity. Sangion A; Gramatica P Environ Int; 2016 Oct; 95():131-43. PubMed ID: 27568576 [TBL] [Abstract][Full Text] [Related]
19. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology. Singh KP; Gupta S; Kumar A; Mohan D Chem Res Toxicol; 2014 May; 27(5):741-53. PubMed ID: 24738471 [TBL] [Abstract][Full Text] [Related]
20. Chronic aquatic toxicity assessment of diverse chemicals on Daphnia magna using QSAR and chemical read-across. Kumar A; Kumar V; Ojha PK; Roy K Regul Toxicol Pharmacol; 2024 Mar; 148():105572. PubMed ID: 38325631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]