These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34162072)

  • 21. Acute toxicity of atrazine, endosulfan sulphate and chlorpyrifos to Vibrio fischeri, Thamnocephalus platyurus and Daphnia magna, relative to their concentrations in surface waters from the Alentejo region of Portugal.
    Palma P; Palma VL; Fernandes RM; Soares AM; Barbosa IR
    Bull Environ Contam Toxicol; 2008 Nov; 81(5):485-9. PubMed ID: 18777155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ecotoxicological characterisation and classification of existing chemicals. Examples from the ICCA HPV initiative and comparison with other existing chemicals.
    Licht O; Weyers A; Nagel R
    Environ Sci Pollut Res Int; 2004; 11(5):291-6. PubMed ID: 15506630
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of the structural factors of organic compounds on the acute toxicity toward
    Tinkov OV; Grigorev VY; Razdolsky AN; Grigoryeva LD; Dearden JC
    SAR QSAR Environ Res; 2020 Aug; 31(8):615-641. PubMed ID: 32713201
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wnt repertoire and developmental expression patterns in the crustacean Thamnocephalus platyurus.
    Constantinou SJ; Pace RM; Stangl AJ; Nagy LM; Williams TA
    Evol Dev; 2016 Dec; 18(5-6):324-341. PubMed ID: 27696666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. QSAR modelling of inhalation toxicity of diverse volatile organic molecules using no observed adverse effect concentration (NOAEC) as the endpoint.
    Nath A; De P; Roy K
    Chemosphere; 2022 Jan; 287(Pt 1):131954. PubMed ID: 34478968
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pesticide resistance from historical agricultural chemical exposure in Thamnocephalus platyurus (Crustacea: Anostraca).
    Brausch JM; Smith PN
    Environ Pollut; 2009 Feb; 157(2):481-7. PubMed ID: 18977573
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An ecotoxicological study of poly(amidoamine) dendrimers-toward quantitative structure activity relationships.
    Naha PC; Davoren M; Casey A; Byrne HJ
    Environ Sci Technol; 2009 Sep; 43(17):6864-9. PubMed ID: 19764261
    [TBL] [Abstract][Full Text] [Related]  

  • 28. QSAR analysis of the acute toxicity of avermectins towards
    Tinkov OV; Grigorev VY; Grigoreva LD
    SAR QSAR Environ Res; 2021 Jul; 32(7):541-571. PubMed ID: 34157880
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In Silico Modeling Method for Computational Aquatic Toxicology of Endocrine Disruptors: A Software-Based Approach Using QSAR Toolbox.
    Bohlen ML; Jeon HP; Kim YJ; Sung B
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31524874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. QSAR modeling in ecotoxicological risk assessment: application to the prediction of acute contact toxicity of pesticides on bees (Apis mellifera L.).
    Hamadache M; Benkortbi O; Hanini S; Amrane A
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):896-907. PubMed ID: 29067614
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrated QSAR Models to Predict Acute Oral Systemic Toxicity.
    Ballabio D; Grisoni F; Consonni V; Todeschini R
    Mol Inform; 2019 Aug; 38(8-9):e1800124. PubMed ID: 30549437
    [TBL] [Abstract][Full Text] [Related]  

  • 32. European Chemicals Agency dossier submissions as an experimental data source: refinement of a fish toxicity model for predicting acute LC50 values.
    Austin T; Denoyelle M; Chaudry A; Stradling S; Eadsforth C
    Environ Toxicol Chem; 2015 Feb; 34(2):369-78. PubMed ID: 25470737
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Validation of a QSAR model for acute toxicity.
    Pavan M; Netzeva TI; Worth AP
    SAR QSAR Environ Res; 2006 Apr; 17(2):147-71. PubMed ID: 16644555
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chlorpropham and phenisopham: phototransformation and ecotoxicity of carbamates in the aquatic environment.
    Passananti M; Lavorgna M; Iesce MR; DellaGreca M; Criscuolo E; Parrella A; Isidori M; Temussi F
    Environ Sci Process Impacts; 2014 Apr; 16(4):823-31. PubMed ID: 24166079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Support vector machine-based model for toxicity of organic compounds against fish.
    Yu X
    Regul Toxicol Pharmacol; 2021 Jul; 123():104942. PubMed ID: 33940084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparing in vivo data and in silico predictions for acute effects assessment of biocidal active substances and metabolites for aquatic organisms.
    Blázquez M; Andreu-Sánchez O; Ranero I; Fernández-Cruz ML; Benfenati E
    Ecotoxicol Environ Saf; 2020 Dec; 205():111291. PubMed ID: 32956865
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative structure-activity relationship to predict acute fish toxicity of organic solvents.
    Levet A; Bordes C; Clément Y; Mignon P; Chermette H; Marote P; Cren-Olivé C; Lantéri P
    Chemosphere; 2013 Oct; 93(6):1094-103. PubMed ID: 23866172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative structure-toxicity relationships of organic chemicals against Pseudokirchneriella subcapitata.
    Yu X
    Aquat Toxicol; 2020 Jul; 224():105496. PubMed ID: 32408003
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantification of contributions of molecular fragments for eye irritation of organic chemicals using QSAR study.
    Kar S; Roy K
    Comput Biol Med; 2014 May; 48():102-8. PubMed ID: 24657909
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zebrafish AC
    Lavado GJ; Gadaleta D; Toma C; Golbamaki A; Toropov AA; Toropova AP; Marzo M; Baderna D; Arning J; Benfenati E
    Ecotoxicol Environ Saf; 2020 Oct; 202():110936. PubMed ID: 32800219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.