These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 34162210)

  • 1. Diastereoselective Synthesis of Tetrabenzohydrofuran Spirooxindoles via Diethyl Phosphite-Mediated Coupling of Isatins with
    Zhang X; Gao Y; Liu Y; Miao Z
    J Org Chem; 2021 Jul; 86(13):8630-8640. PubMed ID: 34162210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereoselective Synthesis of Dihydrocoumarins via [1,2]-Phospha-Brook Rearrangement in Three-Component Coupling Reaction of α-Ketoesters,
    Kaur R; Singh D; Singh RP
    J Org Chem; 2021 Nov; 86(21):15702-15711. PubMed ID: 34637300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diastereoselective synthesis of 2-methoxyimidoyloxiranes via dimethyl phosphite-mediated coupling of α-keto N-sulfinyl imidates with aldehydes.
    Huang W; Liu H; Lu CD; Xu YJ
    Chem Commun (Camb); 2016 Nov; 52(93):13592-13595. PubMed ID: 27808337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diastereoselective 1,6-Addition of α-Phosphonyloxy Enolates to
    Ali A; Jajoria R; Harit HK; Singh RP
    J Org Chem; 2022 Apr; 87(8):5213-5228. PubMed ID: 35378040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A diastereoselective strategy for dihydrophenanthrene-fused spirooxindoles
    Ali A; Harit HK; Behera C; Singh RP
    Chem Commun (Camb); 2024 Aug; 60(67):8904-8907. PubMed ID: 39091176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diethyl Phosphite Initiated Coupling of α-Ketoesters with Imines for Synthesis of α-Phosphonyloxy-β-amino Acid Derivatives and Aziridine-2-carboxylates.
    Jiang J; Liu H; Lu CD; Xu YJ
    Org Lett; 2016 Feb; 18(4):880-3. PubMed ID: 26853279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ring Expansion of Isatins
    Ali A; Harit HK; Devi M; Ghosh D; Singh RP
    J Org Chem; 2022 Dec; 87(24):16313-16327. PubMed ID: 36459618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brønsted base-catalyzed three-component coupling reaction of α-ketoesters, imines, and diethyl phosphite utilizing [1,2]-phospha-Brook rearrangement.
    Kondoh A; Terada M
    Org Biomol Chem; 2016 May; 14(20):4704-11. PubMed ID: 27138876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organocatalytic Asymmetric Synthesis of Biologically Relevant 3,3- Dihydroxyphenyloxindoles via
    Qin X; Liu G; Gao J; Zhang H; Sun D; Zhang G; Zhang S
    J Org Chem; 2021 Apr; 86(8):5489-5498. PubMed ID: 33779183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Michael Additions of Highly Basic Enolates to ortho-Quinone Methides.
    Lewis RS; Garza CJ; Dang AT; Pedro TK; Chain WJ
    Org Lett; 2015 May; 17(9):2278-81. PubMed ID: 25906358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formal Umpolung Addition of Phosphites to 2-Azaaryl Ketones under Chiral Brønsted Base Catalysis: Enantioselective Protonation Utilizing [1,2]-Phospha-Brook Rearrangement.
    Kondoh A; Hirozane T; Terada M
    Chemistry; 2022 Jul; 28(42):e202201240. PubMed ID: 35543698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dialkyl Phosphite-Initiated Cyclopropanation of α,β-Unsaturated Ketones Using α-Ketoesters or Isatin Derivatives.
    Yin D; Liu H; Lu CD; Xu YJ
    J Org Chem; 2017 Mar; 82(6):3252-3261. PubMed ID: 28221041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Expedient Approach to Access Phenalenones via Unconventional [1,2]-Phospha-Brook Rearrangement/Carbonyl Migration.
    Ali A; Behera C; Singh RP
    J Org Chem; 2024 Jun; 89(11):7644-7655. PubMed ID: 38727567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionalized Chromans from
    Akkarasereenon K; Batsomboon P; Ruchirawat S; Ploypradith P
    J Org Chem; 2022 Dec; 87(23):15863-15887. PubMed ID: 36373006
    [No Abstract]   [Full Text] [Related]  

  • 15. Synthesis of C4 - C5 cycloalkyl-fused and C6-modified chromans via ortho-quinone methides.
    Tangdenpaisal K; Chuayboonsong K; Sukjarean P; Katesampao V; Noiphrom N; Ruchirawat S; Ploypradith P
    Chem Asian J; 2015 Apr; 10(4):1050-64. PubMed ID: 25662865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation and Application of Homoenolate Equivalents Utilizing [1,2]-Phospha-Brook Rearrangement under Brønsted Base Catalysis.
    Kondoh A; Aoki T; Terada M
    Chemistry; 2017 Feb; 23(12):2769-2773. PubMed ID: 27918634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Method to Construct 2-Aminobenzofurans via [4 + 1] Cycloaddition Reaction of In Situ Generated
    Lin H; Tang S; Pan Y; Liang P; Ma X; Jiao W; Shao H
    Molecules; 2022 Dec; 27(23):. PubMed ID: 36500630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organocatalytic Phosphonylation of in Situ Formed o-Quinone Methides.
    Huang H; Kang JY
    Org Lett; 2017 Nov; 19(21):5988-5991. PubMed ID: 29064709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-free, Phosphoric Acid-catalyzed Regioselective 1,6-Hydroarylation of para-Quinone Methides with Indoles in Water.
    Xiong B; Si L; Liu Y; Xu W; Jiang T; Cao F; Tang KW; Wong WY
    Chem Asian J; 2022 May; 17(9):e202200042. PubMed ID: 35246930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organocatalytic Asymmetric Addition of Aromatic α-Cyanoketones to
    Gharui C; Parida C; Pan SC
    J Org Chem; 2021 Sep; 86(18):13071-13081. PubMed ID: 34464133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.