These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34162327)

  • 1. Predicting antifreeze proteins with weighted generalized dipeptide composition and multi-regression feature selection ensemble.
    Wang S; Deng L; Xia X; Cao Z; Fei Y
    BMC Bioinformatics; 2021 Jun; 22(Suppl 3):340. PubMed ID: 34162327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AFP-CMBPred: Computational identification of antifreeze proteins by extending consensus sequences into multi-blocks evolutionary information.
    Ali F; Akbar S; Ghulam A; Maher ZA; Unar A; Talpur DB
    Comput Biol Med; 2021 Dec; 139():105006. PubMed ID: 34749096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using support vector machine and evolutionary profiles to predict antifreeze protein sequences.
    Zhao X; Ma Z; Yin M
    Int J Mol Sci; 2012; 13(2):2196-2207. PubMed ID: 22408447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AFP-SPTS: An Accurate Prediction of Antifreeze Proteins Using Sequential and Pseudo-Tri-Slicing Evolutionary Features with an Extremely Randomized Tree.
    Khan A; Uddin J; Ali F; Kumar H; Alghamdi W; Ahmad A
    J Chem Inf Model; 2023 Feb; 63(3):826-834. PubMed ID: 36649569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Effective Antifreeze Protein Predictor with Ensemble Classifiers and Comprehensive Sequence Descriptors.
    Yang R; Zhang C; Gao R; Zhang L
    Int J Mol Sci; 2015 Sep; 16(9):21191-214. PubMed ID: 26370959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction and analysis of protein solubility using a novel scoring card method with dipeptide composition.
    Huang HL; Charoenkwan P; Kao TF; Lee HC; Chang FL; Huang WL; Ho SJ; Shu LS; Chen WL; Ho SY
    BMC Bioinformatics; 2012; 13 Suppl 17(Suppl 17):S3. PubMed ID: 23282103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of nuclear proteins using nuclear translocation signals proposed by probabilistic latent semantic indexing.
    Su EC; Chang JM; Cheng CW; Sung TY; Hsu WL
    BMC Bioinformatics; 2012; 13 Suppl 17(Suppl 17):S13. PubMed ID: 23282098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Blunge Calibration Intelligent Feature Classification Model for the Prediction of Hypothyroid Disease.
    Devi MS; Kumar VD; Brezulianu A; Geman O; Arif M
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepStack-DTIs: Predicting Drug-Target Interactions Using LightGBM Feature Selection and Deep-Stacked Ensemble Classifier.
    Zhang Y; Jiang Z; Chen C; Wei Q; Gu H; Yu B
    Interdiscip Sci; 2022 Jun; 14(2):311-330. PubMed ID: 34731411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of antifreeze proteins using machine learning.
    Khan A; Uddin J; Ali F; Ahmad A; Alghushairy O; Banjar A; Daud A
    Sci Rep; 2022 Nov; 12(1):20672. PubMed ID: 36450775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AFP-LSE: Antifreeze Proteins Prediction Using Latent Space Encoding of Composition of k-Spaced Amino Acid Pairs.
    Usman M; Khan S; Lee JA
    Sci Rep; 2020 Apr; 10(1):7197. PubMed ID: 32345989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TargetFreeze: Identifying Antifreeze Proteins via a Combination of Weights using Sequence Evolutionary Information and Pseudo Amino Acid Composition.
    He X; Han K; Hu J; Yan H; Yang JY; Shen HB; Yu DJ
    J Membr Biol; 2015 Dec; 248(6):1005-14. PubMed ID: 26058944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties.
    Kandaswamy KK; Chou KC; Martinetz T; Möller S; Suganthan PN; Sridharan S; Pugalenthi G
    J Theor Biol; 2011 Feb; 270(1):56-62. PubMed ID: 21056045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iAFP-Ense: An Ensemble Classifier for Identifying Antifreeze Protein by Incorporating Grey Model and PSSM into PseAAC.
    Xiao X; Hui M; Liu Z
    J Membr Biol; 2016 Dec; 249(6):845-854. PubMed ID: 27812737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer-assisted lip diagnosis on Traditional Chinese Medicine using multi-class support vector machines.
    Li F; Zhao C; Xia Z; Wang Y; Zhou X; Li GZ
    BMC Complement Altern Med; 2012 Aug; 12():127. PubMed ID: 22898352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extended dipeptide composition framework for accurate identification of anticancer peptides.
    Ullah F; Salam A; Nadeem M; Amin F; AlSalman H; Abrar M; Alfakih T
    Sci Rep; 2024 Jul; 14(1):17381. PubMed ID: 39075193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate Prediction of Antifreeze Protein from Sequences through Natural Language Text Processing and Interpretable Machine Learning Approaches.
    Dhibar S; Jana B
    J Phys Chem Lett; 2023 Dec; 14(48):10727-10735. PubMed ID: 38009833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of antifreeze proteins investigated via the site-directed spin labeling technique.
    Flores A; Quon JC; Perez AF; Ba Y
    Eur Biophys J; 2018 Sep; 47(6):611-630. PubMed ID: 29487966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature selection and tumor classification for microarray data using relaxed Lasso and generalized multi-class support vector machine.
    Kang C; Huo Y; Xin L; Tian B; Yu B
    J Theor Biol; 2019 Feb; 463():77-91. PubMed ID: 30537483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A stacking-based algorithm for antifreeze protein identification using combined physicochemical, pseudo amino acid composition, and reduction property features.
    Feng C; Wei H; Li X; Feng B; Xu C; Zhu X; Liu R
    Comput Biol Med; 2024 Jun; 176():108534. PubMed ID: 38754217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.