These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34162710)

  • 1. Crystal structure engineering in multimetallic high-index facet nanocatalysts.
    Shen B; Huang L; Shen J; He K; Zheng CY; Dravid VP; Wolverton C; Mirkin CA
    Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34162710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Index-Facet Metal-Alloy Nanoparticles as Fuel Cell Electrocatalysts.
    Huang L; Zheng CY; Shen B; Mirkin CA
    Adv Mater; 2020 Jul; 32(30):e2002849. PubMed ID: 32567137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Building Durable Multimetallic Electrocatalysts from Intermetallic Seeds.
    Bueno SLA; Ashberry HM; Shafei I; Skrabalak SE
    Acc Chem Res; 2021 Apr; 54(7):1662-1672. PubMed ID: 33377763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimetallic High-Index Faceted Heterostructured Nanoparticles.
    Huang L; Lin H; Zheng CY; Kluender EJ; Golnabi R; Shen B; Mirkin CA
    J Am Chem Soc; 2020 Mar; 142(10):4570-4575. PubMed ID: 32096988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significantly enhancing catalytic activity of tetrahexahedral Pt nanocrystals by Bi adatom decoration.
    Chen QS; Zhou ZY; Vidal-Iglesias FJ; Solla-Gullón J; Feliu JM; Sun SG
    J Am Chem Soc; 2011 Aug; 133(33):12930-3. PubMed ID: 21793583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation.
    Tian N; Zhou ZY; Yu NF; Wang LY; Sun SG
    J Am Chem Soc; 2010 Jun; 132(22):7580-1. PubMed ID: 20469858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemically Seed-Mediated Synthesis of Sub-10 nm Tetrahexahedral Pt Nanocrystals Supported on Graphene with Improved Catalytic Performance.
    Liu S; Tian N; Xie AY; Du JH; Xiao J; Liu L; Sun HY; Cheng ZY; Zhou ZY; Sun SG
    J Am Chem Soc; 2016 May; 138(18):5753-6. PubMed ID: 27063648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal Stability of Platinum-Cobalt Bimetallic Nanoparticles: Chemically Disordered Alloys, Ordered Intermetallics, and Core-Shell Structures.
    Huang R; Shao GF; Zhang Y; Wen YH
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12486-12493. PubMed ID: 28349693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metallic nanocatalysis: an accelerating seamless integration with nanotechnology.
    Dai Y; Wang Y; Liu B; Yang Y
    Small; 2015 Jan; 11(3):268-89. PubMed ID: 25363149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scalable Preparation of the Chemically Ordered Pt-Fe-Au Nanocatalysts with High Catalytic Reactivity and Stability for Oxygen Reduction Reactions.
    Zhu H; Cai Y; Wang F; Gao P; Cao J
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22156-22166. PubMed ID: 29882641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study of CO adsorption on tetrahexahedral Pt nanocrystals and interrelated Pt single crystal electrodes by using cyclic voltammetry and in situ FTIR spectroscopy.
    Liu HX; Tian N; Ye JY; Lu BA; Ren J; Huangfu ZC; Zhou ZY; Sun SG
    Faraday Discuss; 2014; 176():409-28. PubMed ID: 25654491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facet-Dependent Strain Determination in Electrochemically Synthetized Platinum Model Catalytic Nanoparticles.
    Carnis J; Gao L; Fernández S; Chahine G; Schülli TU; Labat S; Hensen EJM; Thomas O; Hofmann JP; Richard MI
    Small; 2021 May; 17(18):e2007702. PubMed ID: 33738928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-Dependent Disorder-Order Transformation in the Synthesis of Monodisperse Intermetallic PdCu Nanocatalysts.
    Wang C; Chen DP; Sang X; Unocic RR; Skrabalak SE
    ACS Nano; 2016 Jun; 10(6):6345-53. PubMed ID: 27214313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical synthesis of tetrahexahedral rhodium nanocrystals with extraordinarily high surface energy and high electrocatalytic activity.
    Yu NF; Tian N; Zhou ZY; Huang L; Xiao J; Wen YH; Sun SG
    Angew Chem Int Ed Engl; 2014 May; 53(20):5097-101. PubMed ID: 24692362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity.
    Tian N; Zhou ZY; Sun SG; Ding Y; Wang ZL
    Science; 2007 May; 316(5825):732-5. PubMed ID: 17478717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concave Platinum-Copper Octopod Nanoframes Bounded with Multiple High-Index Facets for Efficient Electrooxidation Catalysis.
    Luo S; Shen PK
    ACS Nano; 2017 Dec; 11(12):11946-11953. PubMed ID: 27662184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the Electrocatalytic Oxygen Reduction Reaction Activity and Stability of Shape-Controlled Pt-Ni Nanoparticles by Thermal Annealing - Elucidating the Surface Atomic Structural and Compositional Changes.
    Beermann V; Gocyla M; Kühl S; Padgett E; Schmies H; Goerlin M; Erini N; Shviro M; Heggen M; Dunin-Borkowski RE; Muller DA; Strasser P
    J Am Chem Soc; 2017 Nov; 139(46):16536-16547. PubMed ID: 29019692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals.
    Porter NS; Wu H; Quan Z; Fang J
    Acc Chem Res; 2013 Aug; 46(8):1867-77. PubMed ID: 23461578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ordering Degree-Dependent Activity of Pt
    Chen MX; Luo X; Song TW; Jiang B; Liang HW
    J Phys Chem Lett; 2022 Apr; 13(16):3549-3555. PubMed ID: 35420438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.