BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 34162728)

  • 21. Zanubrutinib (BGB-3111), a Second-Generation Selective Covalent Inhibitor of Bruton's Tyrosine Kinase and Its Utility in Treating Chronic Lymphocytic Leukemia.
    Rhodes JM; Mato AR
    Drug Des Devel Ther; 2021; 15():919-926. PubMed ID: 33688166
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrin Signaling Shaping BTK-Inhibitor Resistance.
    Polcik L; Dannewitz Prosseda S; Pozzo F; Zucchetto A; Gattei V; Hartmann TN
    Cells; 2022 Jul; 11(14):. PubMed ID: 35883678
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Destabilization of ROR1 enhances activity of Ibrutinib against chronic lymphocytic leukemia in vivo.
    Liu Z; Liu J; Zhang T; Shi M; Chen X; Chen Y; Yu J
    Pharmacol Res; 2020 Jan; 151():104512. PubMed ID: 31726100
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of migratory and prosurvival pathways induced by the homeostatic chemokines CCL19 and CCL21 in B-cell chronic lymphocytic leukemia.
    Cuesta-Mateos C; López-Giral S; Alfonso-Pérez M; de Soria VG; Loscertales J; Guasch-Vidal S; Beltrán AE; Zapata JM; Muñoz-Calleja C
    Exp Hematol; 2010 Sep; 38(9):756-64, 764.e1-4. PubMed ID: 20488224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative analysis of normal versus CLL B-lymphocytes reveals patient-specific variability in signaling mechanisms controlling LFA-1 activation by chemokines.
    Montresor A; Bolomini-Vittori M; Simon SI; Rigo A; Vinante F; Laudanna C
    Cancer Res; 2009 Dec; 69(24):9281-90. PubMed ID: 19934331
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The impacts of zanubrutinib on immune cells in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma.
    Zou YX; Zhu HY; Li XT; Xia Y; Miao KR; Zhao SS; Wu YJ; Wang L; Xu W; Li JY
    Hematol Oncol; 2019 Oct; 37(4):392-400. PubMed ID: 31420873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765.
    Herman SE; Gordon AL; Hertlein E; Ramanunni A; Zhang X; Jaglowski S; Flynn J; Jones J; Blum KA; Buggy JJ; Hamdy A; Johnson AJ; Byrd JC
    Blood; 2011 Jun; 117(23):6287-96. PubMed ID: 21422473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Ibrutinib on the IFN Response of Chronic Lymphocytic Leukemia Cells.
    Xia M; Luo TY; Shi Y; Wang G; Tsui H; Harari D; Spaner DE
    J Immunol; 2020 Nov; 205(10):2629-2639. PubMed ID: 33067379
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeted therapy in chronic lymphocytic leukemia: past, present, and future.
    Danilov AV
    Clin Ther; 2013 Sep; 35(9):1258-70. PubMed ID: 24054703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microenvironment interactions and B-cell receptor signaling in Chronic Lymphocytic Leukemia: Implications for disease pathogenesis and treatment.
    Ten Hacken E; Burger JA
    Biochim Biophys Acta; 2016 Mar; 1863(3):401-413. PubMed ID: 26193078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CD49d Expression Identifies a Biologically Distinct Subtype of Chronic Lymphocytic Leukemia with Inferior Progression-Free Survival on BTK Inhibitor Therapy.
    Alsadhan A; Chen J; Gaglione EM; Underbayev C; Tuma PL; Tian X; Freeman LA; Baskar S; Nierman P; Soto S; Itsara A; Ahn IE; Sun C; Bibikova E; Hartmann TN; Mhibik M; Wiestner A
    Clin Cancer Res; 2023 Sep; 29(18):3612-3621. PubMed ID: 37227160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pharmacodynamics and proteomic analysis of acalabrutinib therapy: similarity of on-target effects to ibrutinib and rationale for combination therapy.
    Patel VK; Lamothe B; Ayres ML; Gay J; Cheung JP; Balakrishnan K; Ivan C; Morse J; Nelson M; Keating MJ; Wierda WG; Marszalek JR; Gandhi V
    Leukemia; 2018 Apr; 32(4):920-930. PubMed ID: 29099493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ibrutinib: a new frontier in the treatment of chronic lymphocytic leukemia by Bruton's tyrosine kinase inhibition.
    Dias AL; Jain D
    Cardiovasc Hematol Agents Med Chem; 2013 Dec; 11(4):265-71. PubMed ID: 24433470
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel Spirocyclic Dimer, SpiD3, Targets Chronic Lymphocytic Leukemia Survival Pathways with Potent Preclinical Effects.
    Eiken AP; Smith AL; Skupa SA; Schmitz E; Rana S; Singh S; Kumar S; Mallareddy JR; de Cubas AA; Krishna A; Kalluchi A; Rowley MJ; D'Angelo CR; Lunning MA; Bociek RG; Vose JM; Natarajan A; El-Gamal D
    Cancer Res Commun; 2024 May; 4(5):1328-1343. PubMed ID: 38687198
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Murine Model of Chronic Lymphocytic Leukemia Based on B Cell-Restricted Expression of Sf3b1 Mutation and Atm Deletion.
    Yin S; Gambe RG; Sun J; Martinez AZ; Cartun ZJ; Regis FFD; Wan Y; Fan J; Brooks AN; Herman SEM; Ten Hacken E; Taylor-Weiner A; Rassenti LZ; Ghia EM; Kipps TJ; Obeng EA; Cibulskis CL; Neuberg D; Campagna DR; Fleming MD; Ebert BL; Wiestner A; Leshchiner I; DeCaprio JA; Getz G; Reed R; Carrasco RD; Wu CJ; Wang L
    Cancer Cell; 2019 Feb; 35(2):283-296.e5. PubMed ID: 30712845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of ibrutinib on CCR7 expression and functionality in chronic lymphocytic leukemia and its implication for the activity of CAP-100, a novel therapeutic anti-CCR7 antibody.
    Mateu-Albero T; Juárez-Sánchez R; Loscertales J; Mol W; Terrón F; Muñoz-Calleja C; Cuesta-Mateos C
    Cancer Immunol Immunother; 2022 Mar; 71(3):627-636. PubMed ID: 34297159
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microenvironment dependency in Chronic Lymphocytic Leukemia: The basis for new targeted therapies.
    ten Hacken E; Burger JA
    Pharmacol Ther; 2014 Dec; 144(3):338-48. PubMed ID: 25050922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeted Axl Inhibition Primes Chronic Lymphocytic Leukemia B Cells to Apoptosis and Shows Synergistic/Additive Effects in Combination with BTK Inhibitors.
    Sinha S; Boysen J; Nelson M; Secreto C; Warner SL; Bearss DJ; Lesnick C; Shanafelt TD; Kay NE; Ghosh AK
    Clin Cancer Res; 2015 May; 21(9):2115-26. PubMed ID: 25673699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissection of the Effects of JAK and BTK Inhibitors on the Functionality of Healthy and Malignant Lymphocytes.
    Hofland T; de Weerdt I; Ter Burg H; de Boer R; Tannheimer S; Tonino SH; Kater AP; Eldering E
    J Immunol; 2019 Oct; 203(8):2100-2109. PubMed ID: 31511358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of B-cell receptor inhibitors in the treatment of patients with chronic lymphocytic leukemia.
    Wiestner A
    Haematologica; 2015 Dec; 100(12):1495-507. PubMed ID: 26628631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.