BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 34162911)

  • 1. Focused CRISPR-Cas9 genetic screening reveals USO1 as a vulnerability in B-cell acute lymphoblastic leukemia.
    Jaiswal AK; Truong H; Tran TM; Lin TL; Casero D; Alberti MO; Rao DS
    Sci Rep; 2021 Jun; 11(1):13158. PubMed ID: 34162911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional interrogation of HOXA9 regulome in MLLr leukemia via reporter-based CRISPR/Cas9 screen.
    Zhang H; Zhang Y; Zhou X; Wright S; Hyle J; Zhao L; An J; Zhao X; Shao Y; Xu B; Lee HM; Chen T; Zhou Y; Chen X; Lu R; Li C
    Elife; 2020 Oct; 9():. PubMed ID: 33001025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cas9 Library Screening Identifies Novel Molecular Vulnerabilities in
    Schneider P; Wander P; Arentsen-Peters STCJM; Vrenken KS; Rockx-Brouwer D; Adriaanse FRS; Hoeve V; Paassen I; Drost J; Pieters R; Stam RW
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37686014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo CRISPR/Cas9 screening identifies Pbrm1 as a regulator of myeloid leukemia development in mice.
    Li BE; Li GY; Cai W; Zhu Q; Seruggia D; Fujiwara Y; Vakoc CR; Orkin SH
    Blood Adv; 2023 Sep; 7(18):5281-5293. PubMed ID: 37428871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic-focused CRISPR/Cas9 screen identifies (absent, small, or homeotic)2-like protein (ASH2L) as a regulator of glioblastoma cell survival.
    Ozyerli-Goknar E; Kala EY; Aksu AC; Bulut I; Cingöz A; Nizamuddin S; Biniossek M; Seker-Polat F; Morova T; Aztekin C; Kung SHY; Syed H; Tuncbag N; Gönen M; Philpott M; Cribbs AP; Acilan C; Lack NA; Onder TT; Timmers HTM; Bagci-Onder T
    Cell Commun Signal; 2023 Nov; 21(1):328. PubMed ID: 37974198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathway-based network modeling finds hidden genes in shRNA screen for regulators of acute lymphoblastic leukemia.
    Wilson JL; Dalin S; Gosline S; Hemann M; Fraenkel E; Lauffenburger DA
    Integr Biol (Camb); 2016 Jul; 8(7):761-74. PubMed ID: 27315426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MondoA drives malignancy in B-ALL through enhanced adaptation to metabolic stress.
    Sipol A; Hameister E; Xue B; Hofstetter J; Barenboim M; Öllinger R; Jain G; Prexler C; Rubio RA; Baldauf MC; Franchina DG; Petry A; Schmäh J; Thiel U; Görlach A; Cario G; Brenner D; Richter GHS; Grünewald TGP; Rad R; Wolf E; Ruland J; Sorensen PH; Burdach SEG
    Blood; 2022 Feb; 139(8):1184-1197. PubMed ID: 33908607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. USO1 expression is dysregulated in non-small cell lung cancer.
    Keogh A; Ryan L; Nur MM; Baird AM; Nicholson S; Cuffe S; Fitzmaurice GJ; Ryan R; Young VK; Finn SP; Gray SG
    Transl Lung Cancer Res; 2022 Sep; 11(9):1877-1895. PubMed ID: 36248341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide CRISPR-Cas9 Screen Identifies Leukemia-Specific Dependence on a Pre-mRNA Metabolic Pathway Regulated by DCPS.
    Yamauchi T; Masuda T; Canver MC; Seiler M; Semba Y; Shboul M; Al-Raqad M; Maeda M; Schoonenberg VAC; Cole MA; Macias-Trevino C; Ishikawa Y; Yao Q; Nakano M; Arai F; Orkin SH; Reversade B; Buonamici S; Pinello L; Akashi K; Bauer DE; Maeda T
    Cancer Cell; 2018 Mar; 33(3):386-400.e5. PubMed ID: 29478914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice.
    Weber J; de la Rosa J; Grove CS; Schick M; Rad L; Baranov O; Strong A; Pfaus A; Friedrich MJ; Engleitner T; Lersch R; Öllinger R; Grau M; Menendez IG; Martella M; Kohlhofer U; Banerjee R; Turchaninova MA; Scherger A; Hoffman GJ; Hess J; Kuhn LB; Ammon T; Kim J; Schneider G; Unger K; Zimber-Strobl U; Heikenwälder M; Schmidt-Supprian M; Yang F; Saur D; Liu P; Steiger K; Chudakov DM; Lenz G; Quintanilla-Martinez L; Keller U; Vassiliou GS; Cadiñanos J; Bradley A; Rad R
    Nat Commun; 2019 Mar; 10(1):1415. PubMed ID: 30926791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring cancer dependencies on metabolic genes from large-scale genetic screens.
    Lagziel S; Lee WD; Shlomi T
    BMC Biol; 2019 Apr; 17(1):37. PubMed ID: 31039782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive clinically informed map of dependencies in cancer cells and framework for target prioritization.
    Pacini C; Duncan E; Gonçalves E; Gilbert J; Bhosle S; Horswell S; Karakoc E; Lightfoot H; Curry E; Muyas F; Bouaboula M; Pedamallu CS; Cortes-Ciriano I; Behan FM; Zalmas LP; Barthorpe A; Francies H; Rowley S; Pollard J; Beltrao P; Parts L; Iorio F; Garnett MJ
    Cancer Cell; 2024 Feb; 42(2):301-316.e9. PubMed ID: 38215750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 'omics of obesity in B-cell acute lymphoblastic leukemia.
    Geitgey DK; Lee M; Cottrill KA; Jaffe M; Pilcher W; Bhasin S; Randall J; Ross AJ; Salemi M; Castillo-Castrejon M; Kilgore MB; Brown AC; Boss JM; Johnston R; Fitzpatrick AM; Kemp ML; English R; Weaver E; Bagchi P; Walsh R; Scharer CD; Bhasin M; Chandler JD; Haynes KA; Wellberg EA; Henry CJ
    J Natl Cancer Inst Monogr; 2023 May; 2023(61):12-29. PubMed ID: 37139973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying Lethal Dependencies with HUGE Predictive Power.
    Gimeno M; San José-Enériz E; Rubio A; Garate L; Miranda E; Castilla C; Agirre X; Prosper F; Carazo F
    Cancers (Basel); 2022 Jul; 14(13):. PubMed ID: 35805023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. When it doesn't run in the blood(vessels) - events involved in vascular disorders.
    Kattner AA
    Biomed J; 2023 Apr; 46(2):100591. PubMed ID: 37059363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systematic CRISPR screen defines mutational mechanisms underpinning signatures caused by replication errors and endogenous DNA damage.
    Zou X; Koh GCC; Nanda AS; Degasperi A; Urgo K; Roumeliotis TI; Agu CA; Badja C; Momen S; Young J; Amarante TD; Side L; Brice G; Perez-Alonso V; Rueda D; Gomez C; Bushell W; Harris R; Choudhary JS; ; Jiricny J; Skarnes WC; Nik-Zainal S
    Nat Cancer; 2021 Jun; 2(6):643-657. PubMed ID: 34164627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The RNA-binding protein IGF2BP3 is critical for MLL-AF4-mediated leukemogenesis.
    Tran TM; Philipp J; Bassi JS; Nibber N; Draper JM; Lin TL; Palanichamy JK; Jaiswal AK; Silva O; Paing M; King J; Katzman S; Sanford JR; Rao DS
    Leukemia; 2022 Jan; 36(1):68-79. PubMed ID: 34321607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic applications of CRISPR/Cas9 mediated targeted gene editing in acute lymphoblastic leukemia: current perspectives, future challenges, and clinical implications.
    Assis AJB; Santana BLO; Gualberto ACM; Pittella-Silva F
    Front Pharmacol; 2023; 14():1322937. PubMed ID: 38130408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting IGF2BP3 enhances antileukemic effects of menin-MLL inhibition in MLL-AF4 leukemia.
    Lin TL; Jaiswal AK; Ritter AJ; Reppas J; Tran TM; Neeb ZT; Katzman S; Thaxton ML; Cohen A; Sanford JR; Rao DS
    Blood Adv; 2024 Jan; 8(2):261-275. PubMed ID: 38048400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IGF2BP3 as a Prognostic Biomarker in Well-Differentiated/Dedifferentiated Liposarcoma.
    Klingbeil KD; Tang JP; Graham DS; Lofftus SY; Jaiswal AK; Lin TL; Frias C; Chen LY; Nakasaki M; Dry SM; Crompton JG; Eilber FC; Rao DS; Kalbasi A; Kadera BE
    Cancers (Basel); 2023 Sep; 15(18):. PubMed ID: 37760460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.