These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34163053)

  • 1. Efficient Fizeau drag from Dirac electrons in monolayer graphene.
    Zhao W; Zhao S; Li H; Wang S; Wang S; Utama MIB; Kahn S; Jiang Y; Xiao X; Yoo S; Watanabe K; Taniguchi T; Zettl A; Wang F
    Nature; 2021 Jun; 594(7864):517-521. PubMed ID: 34163053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fizeau drag in graphene plasmonics.
    Dong Y; Xiong L; Phinney IY; Sun Z; Jing R; McLeod AS; Zhang S; Liu S; Ruta FL; Gao H; Dong Z; Pan R; Edgar JH; Jarillo-Herrero P; Levitov LS; Millis AJ; Fogler MM; Bandurin DA; Basov DN
    Nature; 2021 Jun; 594(7864):513-516. PubMed ID: 34163054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental limits to graphene plasmonics.
    Ni GX; McLeod AS; Sun Z; Wang L; Xiong L; Post KW; Sunku SS; Jiang BY; Hone J; Dean CR; Fogler MM; Basov DN
    Nature; 2018 May; 557(7706):530-533. PubMed ID: 29795255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional Dirac plasmon-polaritons in graphene, 3D topological insulator and hybrid systems.
    In C; Kim UJ; Choi H
    Light Sci Appl; 2022 Oct; 11(1):313. PubMed ID: 36302746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of hydrodynamic plasmons and energy waves in graphene.
    Zhao W; Wang S; Chen S; Zhang Z; Watanabe K; Taniguchi T; Zettl A; Wang F
    Nature; 2023 Feb; 614(7949):688-693. PubMed ID: 36813893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene plasmonics for tunable terahertz metamaterials.
    Ju L; Geng B; Horng J; Girit C; Martin M; Hao Z; Bechtel HA; Liang X; Zettl A; Shen YR; Wang F
    Nat Nanotechnol; 2011 Sep; 6(10):630-4. PubMed ID: 21892164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical nano-imaging of gate-tunable graphene plasmons.
    Chen J; Badioli M; Alonso-González P; Thongrattanasiri S; Huth F; Osmond J; Spasenović M; Centeno A; Pesquera A; Godignon P; Elorza AZ; Camara N; García de Abajo FJ; Hillenbrand R; Koppens FH
    Nature; 2012 Jul; 487(7405):77-81. PubMed ID: 22722861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Nanolasers Enhanced by Hybrid Graphene-Insulator-Metal Structures.
    Li H; Li JH; Hong KB; Yu MW; Chung YC; Hsu CY; Yang JH; Cheng CW; Huang ZT; Chen KP; Lin TR; Gwo S; Lu TC
    Nano Lett; 2019 Aug; 19(8):5017-5024. PubMed ID: 31268338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of Dirac plasmons in a topological insulator.
    Di Pietro P; Ortolani M; Limaj O; Di Gaspare A; Giliberti V; Giorgianni F; Brahlek M; Bansal N; Koirala N; Oh S; Calvani P; Lupi S
    Nat Nanotechnol; 2013 Aug; 8(8):556-60. PubMed ID: 23872838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrothermal Control of Graphene Plasmon-Phonon Polaritons.
    Guo Q; Guinea F; Deng B; Sarpkaya I; Li C; Chen C; Ling X; Kong J; Xia F
    Adv Mater; 2017 Aug; 29(31):. PubMed ID: 28621022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials.
    Nikitin AY; Alonso-González P; Hillenbrand R
    Nano Lett; 2014 May; 14(5):2896-901. PubMed ID: 24773123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-based active slow surface plasmon polaritons.
    Lu H; Zeng C; Zhang Q; Liu X; Hossain MM; Reineck P; Gu M
    Sci Rep; 2015 Feb; 5():8443. PubMed ID: 25676462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling of plasmon and photon modes in a graphene-based multilayer structure.
    Ding L; Xu W; Zhao C; Wang S; Liu H
    Opt Lett; 2015 Oct; 40(19):4524-7. PubMed ID: 26421572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong plasmon reflection at nanometer-size gaps in monolayer graphene on SiC.
    Chen J; Nesterov ML; Nikitin AY; Thongrattanasiri S; Alonso-González P; Slipchenko TM; Speck F; Ostler M; Seyller T; Crassee I; Koppens FH; Martin-Moreno L; García de Abajo FJ; Kuzmenko AB; Hillenbrand R
    Nano Lett; 2013; 13(12):6210-5. PubMed ID: 24188400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation and Active Control of a Collective Polariton Mode and Polaritonic Band Gap in Few-Layer WS
    Liu W; Wang Y; Zheng B; Hwang M; Ji Z; Liu G; Li Z; Sorger VJ; Pan A; Agarwal R
    Nano Lett; 2020 Jan; 20(1):790-798. PubMed ID: 31846342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gate-tuning of graphene plasmons revealed by infrared nano-imaging.
    Fei Z; Rodin AS; Andreev GO; Bao W; McLeod AS; Wagner M; Zhang LM; Zhao Z; Thiemens M; Dominguez G; Fogler MM; Castro Neto AH; Lau CN; Keilmann F; Basov DN
    Nature; 2012 Jul; 487(7405):82-5. PubMed ID: 22722866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical control of optical plasmon resonance with graphene.
    Kim J; Son H; Cho DJ; Geng B; Regan W; Shi S; Kim K; Zettl A; Shen YR; Wang F
    Nano Lett; 2012 Nov; 12(11):5598-602. PubMed ID: 23025816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-shift-mediated sensitive detection of propagating ultra-confined graphene plasmons.
    Luo W; Jiang X; Fan J; Zhang N; Cai W; Xu J
    Opt Express; 2022 Jan; 30(2):1228-1234. PubMed ID: 35209287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusive Fizeau Drag in Spatiotemporal Thermal Metamaterials.
    Xu L; Xu G; Huang J; Qiu CW
    Phys Rev Lett; 2022 Apr; 128(14):145901. PubMed ID: 35476493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupled One-Dimensional Plasmons and Two-Dimensional Phonon Polaritons in Hybrid Silver Nanowire/Silicon Carbide Structures.
    Joshi T; Kang JH; Jiang L; Wang S; Tarigo T; Lyu T; Kahn S; Shi Z; Shen YR; Crommie MF; Wang F
    Nano Lett; 2017 Jun; 17(6):3662-3667. PubMed ID: 28460175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.