These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34163337)

  • 1. An Online Data Visualization Feedback Protocol for Motor Imagery-Based BCI Training.
    Duan X; Xie S; Xie X; Obermayer K; Cui Y; Wang Z
    Front Hum Neurosci; 2021; 15():625983. PubMed ID: 34163337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A transfer learning-based feedback training motivates the performance of SMR-BCI.
    Duan X; Xie S; Lv Y; Xie X; Obermayer K; Yan H
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36577144
    [No Abstract]   [Full Text] [Related]  

  • 3. Long-Term BCI Training of a Tetraplegic User: Adaptive Riemannian Classifiers and User Training.
    Benaroch C; Sadatnejad K; Roc A; Appriou A; Monseigne T; Pramij S; Mladenovic J; Pillette L; Jeunet C; Lotte F
    Front Hum Neurosci; 2021; 15():635653. PubMed ID: 33815081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining detrended cross-correlation analysis with Riemannian geometry-based classification for improved brain-computer interface performance.
    Racz FS; Kumar S; Kaposzta Z; Alawieh H; Liu DH; Liu R; Czoch A; Mukli P; Millán JDR
    Front Neurosci; 2024; 18():1271831. PubMed ID: 38550567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective Cross-Subject Transfer Learning Based on Riemannian Tangent Space for Motor Imagery Brain-Computer Interface.
    Xu Y; Huang X; Lan Q
    Front Neurosci; 2021; 15():779231. PubMed ID: 34803600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Classification of Motor Imagery Electroencephalography Signals Using Deep Learning Methods.
    Majidov I; Whangbo T
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30978978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates.
    Vasilyev A; Liburkina S; Yakovlev L; Perepelkina O; Kaplan A
    Neuropsychologia; 2017 Mar; 97():56-65. PubMed ID: 28167121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-adaptive Training Improves Efficacy of a Multi-Day EEG-Based Motor Imagery BCI Training.
    Abu-Rmileh A; Zakkay E; Shmuelof L; Shriki O
    Front Hum Neurosci; 2019; 13():362. PubMed ID: 31680914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine-learning-based coadaptive calibration for brain-computer interfaces.
    Vidaurre C; Sannelli C; Müller KR; Blankertz B
    Neural Comput; 2011 Mar; 23(3):791-816. PubMed ID: 21162666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Session-independent subject-adaptive mental imagery BCI using selective filter-bank adaptive Riemannian features.
    Meenakshinathan J; Gupta V; Reddy TK; Behera L; Sandhan T
    Med Biol Eng Comput; 2024 Jun; ():. PubMed ID: 38825665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Frequency Effect of the Motor Imagery Brain Computer Interface Training on Cortical Response in Healthy Subjects: A Randomized Clinical Trial of Functional Near-Infrared Spectroscopy Study.
    Lin Q; Zhang Y; Zhang Y; Zhuang W; Zhao B; Ke X; Peng T; You T; Jiang Y; Yilifate A; Huang W; Hou L; You Y; Huai Y; Qiu Y; Zheng Y; Ou H
    Front Neurosci; 2022; 16():810553. PubMed ID: 35431792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Android Feedback-Based Training Modulates Sensorimotor Rhythms During Motor Imagery.
    Penaloza CI; Alimardani M; Nishio S
    IEEE Trans Neural Syst Rehabil Eng; 2018 Mar; 26(3):666-674. PubMed ID: 29522410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high performance sensorimotor beta rhythm-based brain-computer interface associated with human natural motor behavior.
    Bai O; Lin P; Vorbach S; Floeter MK; Hattori N; Hallett M
    J Neural Eng; 2008 Mar; 5(1):24-35. PubMed ID: 18310808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI.
    Kumar S; Mamun K; Sharma A
    Comput Biol Med; 2017 Dec; 91():231-242. PubMed ID: 29100117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study.
    Jeunet C; Jahanpour E; Lotte F
    J Neural Eng; 2016 Jun; 13(3):036024. PubMed ID: 27172246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface.
    Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G
    Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Riemannian geometry-based metrics to measure and reinforce user performance changes during brain-computer interface user training.
    Ivanov N; Chau T
    Front Comput Neurosci; 2023; 17():1108889. PubMed ID: 36860616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tangent space alignment: Transfer learning for Brain-Computer Interface.
    Bleuzé A; Mattout J; Congedo M
    Front Hum Neurosci; 2022; 16():1049985. PubMed ID: 36530202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG.
    Kaiser V; Bauernfeind G; Kreilinger A; Kaufmann T; Kübler A; Neuper C; Müller-Putz GR
    Neuroimage; 2014 Jan; 85 Pt 1():432-44. PubMed ID: 23651839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduce Calibration Time in Motor Imagery Using Spatially Regularized Symmetric Positives-Definite Matrices Based Classification.
    Singh A; Lal S; Guesgen HW
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30658523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.