These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 34163342)

  • 21. Determining optimal mobile neurofeedback methods for motor neurorehabilitation in children and adults with non-progressive neurological disorders: a scoping review.
    Behboodi A; Lee WA; Hinchberger VS; Damiano DL
    J Neuroeng Rehabil; 2022 Sep; 19(1):104. PubMed ID: 36171602
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facilitating effects of transcranial direct current stimulation on motor imagery brain-computer interface with robotic feedback for stroke rehabilitation.
    Ang KK; Guan C; Phua KS; Wang C; Zhao L; Teo WP; Chen C; Ng YS; Chew E
    Arch Phys Med Rehabil; 2015 Mar; 96(3 Suppl):S79-87. PubMed ID: 25721551
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional-oriented, portable brain-computer interface training for hand motor recovery after stroke: a randomized controlled study.
    Fu J; Chen S; Shu X; Lin Y; Jiang Z; Wei D; Gao J; Jia J
    Front Neurosci; 2023; 17():1146146. PubMed ID: 37250399
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke.
    Ang KK; Guan C; Phua KS; Wang C; Zhou L; Tang KY; Ephraim Joseph GJ; Kuah CW; Chua KS
    Front Neuroeng; 2014; 7():30. PubMed ID: 25120465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI)-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial.
    Frolov AA; Mokienko O; Lyukmanov R; Biryukova E; Kotov S; Turbina L; Nadareyshvily G; Bushkova Y
    Front Neurosci; 2017; 11():400. PubMed ID: 28775677
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Brain Functional Networks Study of Subacute Stroke Patients With Upper Limb Dysfunction After Comprehensive Rehabilitation Including BCI Training.
    Wu Q; Yue Z; Ge Y; Ma D; Yin H; Zhao H; Liu G; Wang J; Dou W; Pan Y
    Front Neurol; 2019; 10():1419. PubMed ID: 32082238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Motor Imagery-Based Brain-Computer Interface Combined with Multimodal Feedback to Promote Upper Limb Motor Function after Stroke: A Preliminary Study.
    Hu YQ; Gao TH; Li J; Tao JC; Bai YL; Lu RR
    Evid Based Complement Alternat Med; 2021; 2021():1116126. PubMed ID: 34777531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional electrical stimulation therapy controlled by a P300-based brain-computer interface, as a therapeutic alternative for upper limb motor function recovery in chronic post-stroke patients. A non-randomized pilot study.
    Ramirez-Nava AG; Mercado-Gutierrez JA; Quinzaños-Fresnedo J; Toledo-Peral C; Vega-Martinez G; Gutierrez MI; Pacheco-Gallegos MDR; Hernández-Arenas C; Gutiérrez-Martínez J
    Front Neurol; 2023; 14():1221160. PubMed ID: 37669261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensorimotor Rhythm-Brain Computer Interface With Audio-Cue, Motor Observation and Multisensory Feedback for Upper-Limb Stroke Rehabilitation: A Controlled Study.
    Li X; Wang L; Miao S; Yue Z; Tang Z; Su L; Zheng Y; Wu X; Wang S; Wang J; Dou Z
    Front Neurosci; 2022; 16():808830. PubMed ID: 35360158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Brain oscillations in reflecting motor status and recovery induced by action observation-driven robotic hand intervention in chronic stroke.
    Yue Z; Xiao P; Wang J; Tong RK
    Front Neurosci; 2023; 17():1241772. PubMed ID: 38146541
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Upper extremity training followed by lower extremity training with a brain-computer interface rehabilitation system.
    Sieghartsleitner S; Sebastián-Romagosa M; Cho W; Grünwald J; Ortner R; Scharinger J; Kamada K; Guger C
    Front Neurosci; 2024; 18():1346607. PubMed ID: 38500488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in Electroencephalography Complexity using a Brain Computer Interface-Motor Observation Training in Chronic Stroke Patients: A Fuzzy Approximate Entropy Analysis.
    Sun R; Wong WW; Wang J; Tong RK
    Front Hum Neurosci; 2017; 11():444. PubMed ID: 28928649
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Action observation training and brain-computer interface controlled functional electrical stimulation enhance upper extremity performance and cortical activation in patients with stroke: a randomized controlled trial.
    Lee SH; Kim SS; Lee BH
    Physiother Theory Pract; 2022 Sep; 38(9):1126-1134. PubMed ID: 33026895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contralesional Brain-Computer Interface Control of a Powered Exoskeleton for Motor Recovery in Chronic Stroke Survivors.
    Bundy DT; Souders L; Baranyai K; Leonard L; Schalk G; Coker R; Moran DW; Huskey T; Leuthardt EC
    Stroke; 2017 Jul; 48(7):1908-1915. PubMed ID: 28550098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Promotoer, a brain-computer interface-assisted intervention to promote upper limb functional motor recovery after stroke: a statistical analysis plan for a randomized controlled trial.
    Cipriani M; Pichiorri F; Colamarino E; Toppi J; Tamburella F; Lorusso M; Bigioni A; Morone G; Tomaiuolo F; Santoro F; Cordella D; Molinari M; Cincotti F; Mattia D; Puopolo M
    Trials; 2023 Nov; 24(1):736. PubMed ID: 37974284
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Behavioral Outcomes Following Brain-Computer Interface Intervention for Upper Extremity Rehabilitation in Stroke: A Randomized Controlled Trial.
    Remsik AB; Dodd K; Williams L; Thoma J; Jacobson T; Allen JD; Advani H; Mohanty R; McMillan M; Rajan S; Walczak M; Young BM; Nigogosyan Z; Rivera CA; Mazrooyisebdani M; Tellapragada N; Walton LM; Gjini K; van Kan PLE; Kang TJ; Sattin JA; Nair VA; Edwards DF; Williams JC; Prabhakaran V
    Front Neurosci; 2018; 12():752. PubMed ID: 30467461
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An EEG-EMG correlation-based brain-computer interface for hand orthosis supported neuro-rehabilitation.
    Chowdhury A; Raza H; Meena YK; Dutta A; Prasad G
    J Neurosci Methods; 2019 Jan; 312():1-11. PubMed ID: 30452976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcranial direct current stimulation and EEG-based motor imagery BCI for upper limb stroke rehabilitation.
    Ang KK; Guan C; Phua KS; Wang C; Teh I; Chen CW; Chew E
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4128-31. PubMed ID: 23366836
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical improvement with intensive robot-assisted arm training in chronic stroke is unchanged by supplementary tDCS.
    Edwards DJ; Cortes M; Rykman-Peltz A; Chang J; Elder J; Thickbroom G; Mariman JJ; Gerber LM; Oromendia C; Krebs HI; Fregni F; Volpe BT; Pascual-Leone A
    Restor Neurol Neurosci; 2019; 37(2):167-180. PubMed ID: 30932903
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural activity modulations and motor recovery following brain-exoskeleton interface mediated stroke rehabilitation.
    Bhagat NA; Yozbatiran N; Sullivan JL; Paranjape R; Losey C; Hernandez Z; Keser Z; Grossman R; Francisco GE; O'Malley MK; Contreras-Vidal JL
    Neuroimage Clin; 2020; 28():102502. PubMed ID: 33395991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.