These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 34163346)

  • 1. Learning Transferable Push Manipulation Skills in Novel Contexts.
    Howard R; Zito C
    Front Neurorobot; 2021; 15():671775. PubMed ID: 34163346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Let's Push Things Forward: A Survey on Robot Pushing.
    Stüber J; Zito C; Stolkin R
    Front Robot AI; 2020; 7():8. PubMed ID: 33501177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. To push or not to push: on the rearrangement of movable objects by a mobile robot.
    Ben-Shahar O; Rivlin E
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(5):667-79. PubMed ID: 18255986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contact-state classification in human-demonstrated robot compliant motion tasks using the boosting algorithm.
    Cabras S; Castellanos ME; Staffetti E
    IEEE Trans Syst Man Cybern B Cybern; 2010 Oct; 40(5):1372-86. PubMed ID: 20106744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skill Learning by Autonomous Robotic Playing Using Active Learning and Exploratory Behavior Composition.
    Hangl S; Dunjko V; Briegel HJ; Piater J
    Front Robot AI; 2020; 7():42. PubMed ID: 33501210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implicit Contact Dynamics Modeling With Explicit Inertia Matrix Representation for Real-Time, Model-Based Control in Physical Environment.
    Itoh TD; Ishihara K; Morimoto J
    Neural Comput; 2022 Jan; 34(2):360-377. PubMed ID: 34915580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Representation in natural and artificial agents: an embodied cognitive science perspective.
    Pfeifer R; Scheier C
    Z Naturforsch C J Biosci; 1998; 53(7-8):480-503. PubMed ID: 9755508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Action Generation Adapted to Low-Level and High-Level Robot-Object Interaction States.
    Maestre C; Mukhtar G; Gonzales C; Doncieux S
    Front Neurorobot; 2019; 13():56. PubMed ID: 31396071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction precedes control in motor learning.
    Flanagan JR; Vetter P; Johansson RS; Wolpert DM
    Curr Biol; 2003 Jan; 13(2):146-50. PubMed ID: 12546789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning Semantics of Gestural Instructions for Human-Robot Collaboration.
    Shukla D; Erkent Ö; Piater J
    Front Neurorobot; 2018; 12():7. PubMed ID: 29615888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model-based learning for mobile robot navigation from the dynamical systems perspective.
    Tani J
    IEEE Trans Syst Man Cybern B Cybern; 1996; 26(3):421-36. PubMed ID: 18263044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time multiple human perception with color-depth cameras on a mobile robot.
    Zhang H; Reardon C; Parker LE
    IEEE Trans Cybern; 2013 Oct; 43(5):1429-41. PubMed ID: 23974672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Teaching NICO How to Grasp: An Empirical Study on Crossmodal Social Interaction as a Key Factor for Robots Learning From Humans.
    Kerzel M; Pekarek-Rosin T; Strahl E; Heinrich S; Wermter S
    Front Neurorobot; 2020; 14():28. PubMed ID: 32581759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Word-object and action-object association learning across early development.
    Eiteljoerge SFV; Adam M; Elsner B; Mani N
    PLoS One; 2019; 14(8):e0220317. PubMed ID: 31393901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning Actions From Natural Language Instructions Using an ON-World Embodied Cognitive Architecture.
    Giorgi I; Cangelosi A; Masala GL
    Front Neurorobot; 2021; 15():626380. PubMed ID: 34054452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robot Intelligent Grasp of Unknown Objects Based on Multi-Sensor Information.
    Ji SQ; Huang MB; Huang HP
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30986985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-shot learning for autonomous aerial manipulation.
    Zito C; Ferrante E
    Front Robot AI; 2022; 9():960571. PubMed ID: 36274917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning efficient haptic shape exploration with a rigid tactile sensor array.
    Fleer S; Moringen A; Klatzky RL; Ritter H
    PLoS One; 2020; 15(1):e0226880. PubMed ID: 31896135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsically motivated reinforcement learning for human-robot interaction in the real-world.
    Qureshi AH; Nakamura Y; Yoshikawa Y; Ishiguro H
    Neural Netw; 2018 Nov; 107():23-33. PubMed ID: 29631753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Where Does It Belong? Autonomous Object Mapping in Open-World Settings.
    Langer E; Patten T; Vincze M
    Front Robot AI; 2022; 9():828732. PubMed ID: 35516790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.