These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 34163561)
1. The Concurrent Control of Motion and Contact Force in the Presence of Predictable Disturbances. Piovesan D; Kolesnikov M; Lynch K; Mussa-Ivaldi FA J Mech Robot; 2019 Dec; 11(6):060903. PubMed ID: 34163561 [TBL] [Abstract][Full Text] [Related]
2. A force-controlled planar haptic device for movement control analysis of the human arm. de Vlugt E; Schouten AC; van der Helm FC; Teerhuis PC; Brouwn GG J Neurosci Methods; 2003 Oct; 129(2):151-68. PubMed ID: 14511818 [TBL] [Abstract][Full Text] [Related]
3. Measurements of human force control during a constrained arm motion using a force-actuated joystick. McIntyre J; Gurfinkel EV; Lipshits MI; Droulez J; Gurfinkel VS J Neurophysiol; 1995 Mar; 73(3):1201-22. PubMed ID: 7608766 [TBL] [Abstract][Full Text] [Related]
4. Learning to push and learning to move: the adaptive control of contact forces. Casadio M; Pressman A; Mussa-Ivaldi FA Front Comput Neurosci; 2015; 9():118. PubMed ID: 26594163 [TBL] [Abstract][Full Text] [Related]
5. Functional significance of stiffness in adaptation of multijoint arm movements to stable and unstable dynamics. Franklin DW; Burdet E; Osu R; Kawato M; Milner TE Exp Brain Res; 2003 Jul; 151(2):145-57. PubMed ID: 12783150 [TBL] [Abstract][Full Text] [Related]
6. A robotic manipulator for the characterization of two-dimensional dynamic stiffness using stochastic displacement perturbations. Acosta AM; Kirsch RF; Perreault EJ J Neurosci Methods; 2000 Oct; 102(2):177-86. PubMed ID: 11040414 [TBL] [Abstract][Full Text] [Related]
7. Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm. Dizio P; Lackner JR J Neurophysiol; 1995 Oct; 74(4):1787-92. PubMed ID: 8989414 [TBL] [Abstract][Full Text] [Related]
8. On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms. Gottlieb GL J Neurophysiol; 1996 Nov; 76(5):3207-29. PubMed ID: 8930267 [TBL] [Abstract][Full Text] [Related]
9. Voluntary control of static endpoint stiffness during force regulation tasks. Perreault EJ; Kirsch RF; Crago PE J Neurophysiol; 2002 Jun; 87(6):2808-16. PubMed ID: 12037183 [TBL] [Abstract][Full Text] [Related]
10. Anisotropy in the haptic perception of force direction and magnitude. van Beek FE; Tiest WM; Kappers AM IEEE Trans Haptics; 2013; 6(4):399-407. PubMed ID: 24808392 [TBL] [Abstract][Full Text] [Related]
11. The central nervous system stabilizes unstable dynamics by learning optimal impedance. Burdet E; Osu R; Franklin DW; Milner TE; Kawato M Nature; 2001 Nov; 414(6862):446-9. PubMed ID: 11719805 [TBL] [Abstract][Full Text] [Related]
12. Novel strategies in feedforward adaptation to a position-dependent perturbation. Hinder MR; Milner TE Exp Brain Res; 2005 Aug; 165(2):239-49. PubMed ID: 15856204 [TBL] [Abstract][Full Text] [Related]
13. Estimating Human Wrist Stiffness during a Tooling Task. Phan GH; Hansen C; Tommasino P; Budhota A; Mohan DM; Hussain A; Burdet E; Campolo D Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32521678 [TBL] [Abstract][Full Text] [Related]
14. Robust Control in Human Reaching Movements: A Model-Free Strategy to Compensate for Unpredictable Disturbances. Crevecoeur F; Scott SH; Cluff T J Neurosci; 2019 Oct; 39(41):8135-8148. PubMed ID: 31488611 [TBL] [Abstract][Full Text] [Related]
15. Learning the dynamics of reaching movements results in the modification of arm impedance and long-latency perturbation responses. Wang T; Dordevic GS; Shadmehr R Biol Cybern; 2001 Dec; 85(6):437-48. PubMed ID: 11762234 [TBL] [Abstract][Full Text] [Related]
16. Adaptive control of stiffness to stabilize hand position with large loads. Franklin DW; Milner TE Exp Brain Res; 2003 Sep; 152(2):211-20. PubMed ID: 12845511 [TBL] [Abstract][Full Text] [Related]
17. Human arm endpoint-impedance in rhythmic human-robot interaction exhibits cyclic variations. Fortineau V; Siegler IA; Makarov M; Rodriguez-Ayerbe P PLoS One; 2023; 18(12):e0295640. PubMed ID: 38096319 [TBL] [Abstract][Full Text] [Related]
18. Rapid adaptation to Coriolis force perturbations of arm trajectory. Lackner JR; Dizio P J Neurophysiol; 1994 Jul; 72(1):299-313. PubMed ID: 7965013 [TBL] [Abstract][Full Text] [Related]
19. Improved single- and multi-contact life-time testing of dental restorative materials using key characteristics of the human masticatory system and a force/position-controlled robotic dental wear simulator. Raabe D; Harrison A; Ireland A; Alemzadeh K; Sandy J; Dogramadzi S; Melhuish C; Burgess S Bioinspir Biomim; 2012 Mar; 7(1):016002. PubMed ID: 22155971 [TBL] [Abstract][Full Text] [Related]