These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34163622)

  • 21. Insights into the binding and covalent inhibition mechanism of PF-07321332 to SARS-CoV-2 M
    Ngo ST; Nguyen TH; Tung NT; Mai BK
    RSC Adv; 2022 Jan; 12(6):3729-3737. PubMed ID: 35425393
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for substrate binding-induced zwitterion formation in the catalytic Cys-His dyad of the SARS-CoV main protease.
    Paasche A; Zipper A; Schäfer S; Ziebuhr J; Schirmeister T; Engels B
    Biochemistry; 2014 Sep; 53(37):5930-46. PubMed ID: 25196915
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploration of natural compounds with anti-SARS-CoV-2 activity via inhibition of SARS-CoV-2 Mpro.
    Bharadwaj S; Dubey A; Yadava U; Mishra SK; Kang SG; Dwivedi VD
    Brief Bioinform; 2021 Mar; 22(2):1361-1377. PubMed ID: 33406222
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methyl β-D-galactopyranoside esters as potential inhibitors for SARS-CoV-2 protease enzyme: synthesis, antimicrobial, PASS, molecular docking, molecular dynamics simulations and quantum computations.
    Amin MR; Yasmin F; Dey S; Mahmud S; Saleh MA; Emran TB; Hasan I; Rajia S; Ogawa Y; Fujii Y; Yamada M; Ozeki Y; Kawsar SMA
    Glycoconj J; 2022 Apr; 39(2):261-290. PubMed ID: 35037163
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimating the binding energetics of reversible covalent inhibitors of the SARS-CoV-2 main protease: an
    Awoonor-Williams E
    Phys Chem Chem Phys; 2022 Oct; 24(38):23391-23401. PubMed ID: 36128834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rutin Is a Low Micromolar Inhibitor of SARS-CoV-2 Main Protease 3CLpro: Implications for Drug Design of Quercetin Analogs.
    Rizzuti B; Grande F; Conforti F; Jimenez-Alesanco A; Ceballos-Laita L; Ortega-Alarcon D; Vega S; Reyburn HT; Abian O; Velazquez-Campoy A
    Biomedicines; 2021 Apr; 9(4):. PubMed ID: 33918402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In silico analysis and identification of antiviral coumarin derivatives against 3-chymotrypsin-like main protease of the novel coronavirus SARS-CoV-2.
    Abdizadeh R; Hadizadeh F; Abdizadeh T
    Mol Divers; 2022 Apr; 26(2):1053-1076. PubMed ID: 34213728
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Michaelis-like complex of SARS-CoV-2 main protease visualized by room-temperature X-ray crystallography.
    Kneller DW; Zhang Q; Coates L; Louis JM; Kovalevsky A
    IUCrJ; 2021 Nov; 8(Pt 6):973-979. PubMed ID: 34804549
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular dynamics simulations of HIV-1 protease with peptide substrate.
    Harrison RW; Weber IT
    Protein Eng; 1994 Nov; 7(11):1353-63. PubMed ID: 7700867
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Natural Compounds as Inhibitors of SARS-CoV-2 Main Protease (3CLpro): A Molecular Docking and Simulation Approach to Combat COVID-19.
    Rehman MT; AlAjmi MF; Hussain A
    Curr Pharm Des; 2021; 27(33):3577-3589. PubMed ID: 33200697
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational insights into tetracyclines as inhibitors against SARS-CoV-2 M
    Bharadwaj S; Lee KE; Dwivedi VD; Kang SG
    Life Sci; 2020 Sep; 257():118080. PubMed ID: 32653520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling the archetype cysteine protease reaction using dispersion corrected density functional methods in ONIOM-type hybrid QM/MM calculations; the proteolytic reaction of papain.
    Fekete A; Komáromi I
    Phys Chem Chem Phys; 2016 Dec; 18(48):32847-32861. PubMed ID: 27883128
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of the Warhead of Dipeptidyl Keto Michael Acceptors on the Inhibition Mechanism of Cysteine Protease Cathepsin L.
    Fernández-de-la-Pradilla A; Royo S; Schirmeister T; Barthels F; Świderek K; González FV; Moliner V
    ACS Catal; 2023 Oct; 13(20):13354-13368. PubMed ID: 37881790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular modeling and simulations of some antiviral drugs, benzylisoquinoline alkaloid, and coumarin molecules to investigate the effects on Mpro main viral protease inhibition.
    Mir SA; Meher RK; Nayak B
    Biochem Biophys Rep; 2023 Jul; 34():101459. PubMed ID: 36987522
    [TBL] [Abstract][Full Text] [Related]  

  • 35. pH profiles of 3-chymotrypsin-like protease (3CLpro) from SARS-CoV-2 elucidate its catalytic mechanism and a histidine residue critical for activity.
    Al Adem K; Ferreira JC; Fadl S; Rabeh WM
    J Biol Chem; 2023 Feb; 299(2):102790. PubMed ID: 36509143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clarification of the mechanism of acylation reaction and origin of substrate specificity of the serine-carboxyl peptidase sedolisin through QM/MM free energy simulations.
    Xu Q; Yao J; Wlodawer A; Guo H
    J Phys Chem B; 2011 Mar; 115(10):2470-6. PubMed ID: 21332137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unveiling the Mechanistic Singularities of Caspases: A Computational Analysis of the Reaction Mechanism in Human Caspase-1.
    Ramos-Guzmán CA; Ruiz-Pernía JJ; Zinovjev K; Tuñón I
    ACS Catal; 2023 Apr; 13(7):4348-4361. PubMed ID: 37066044
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure-Based Virtual Screening to Discover Potential Lead Molecules for the SARS-CoV-2 Main Protease.
    Gahlawat A; Kumar N; Kumar R; Sandhu H; Singh IP; Singh S; Sjöstedt A; Garg P
    J Chem Inf Model; 2020 Dec; 60(12):5781-5793. PubMed ID: 32687345
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of the Cruzain Cysteine Protease Reversible and Irreversible Covalent Inhibition Mechanism.
    Silva JRA; Cianni L; Araujo D; Batista PHJ; de Vita D; Rosini F; Leitão A; Lameira J; Montanari CA
    J Chem Inf Model; 2020 Mar; 60(3):1666-1677. PubMed ID: 32126170
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of Phytochemicals from Arabian Peninsula Medicinal Plants as Strong Binders to SARS-CoV-2 Proteases (3CL
    Saquib Q; Bakheit AH; Ahmed S; Ansari SM; Al-Salem AM; Al-Khedhairy AA
    Molecules; 2024 Feb; 29(5):. PubMed ID: 38474509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.