These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 34163622)
41. Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors - an Ghosh R; Chakraborty A; Biswas A; Chowdhuri S J Biomol Struct Dyn; 2021 Aug; 39(12):4362-4374. PubMed ID: 32568613 [TBL] [Abstract][Full Text] [Related]
42. Harnessing Brazilian biodiversity database: identification of flavonoids as potential inhibitors of SARS-CoV-2 main protease using computational approaches and all-atom molecular dynamics simulation. da Rocha JAP; da Costa RA; da Costa ADSS; da Rocha ECM; Gomes AJB; Machado AK; Fagan SB; Brasil DDSB; Lima E Lima AH Front Chem; 2024; 12():1336001. PubMed ID: 38456183 [TBL] [Abstract][Full Text] [Related]
43. Unraveling the catalytic mechanism of SARS-CoV-2 papain-like protease with allosteric modulation of C270 mutation using multiscale computational approaches. Shao Q; Xiong M; Li J; Hu H; Su H; Xu Y Chem Sci; 2023 May; 14(18):4681-4696. PubMed ID: 37181765 [TBL] [Abstract][Full Text] [Related]
44. Cysteine focused covalent inhibitors against the main protease of SARS-CoV-2. Paul AS; Islam R; Parves MR; Mamun AA; Shahriar I; Hossain MI; Hossain MN; Ali MA; Halim MA J Biomol Struct Dyn; 2022 Mar; 40(4):1639-1658. PubMed ID: 33047658 [TBL] [Abstract][Full Text] [Related]
45. 3C-like proteinase from SARS coronavirus catalyzes substrate hydrolysis by a general base mechanism. Huang C; Wei P; Fan K; Liu Y; Lai L Biochemistry; 2004 Apr; 43(15):4568-74. PubMed ID: 15078103 [TBL] [Abstract][Full Text] [Related]
46. Catalytic Mechanism of Human T-Cell Leukemia Virus Type 1 Protease Investigated by Combined QM/MM Molecular Dynamics Simulations. Petrillo N; Dinh K; Vogt KA; Ma S J Chem Inf Model; 2023 Jun; 63(12):3865-3877. PubMed ID: 37289654 [TBL] [Abstract][Full Text] [Related]
47. Molecular insights to the binding interactions of APNS containing HIV-protease inhibitors against SARS-CoV-2 M Purohit P; Dash JJ; Muya JT; Meher BR J Biomol Struct Dyn; 2023 Jun; 41(9):3900-3913. PubMed ID: 35388744 [TBL] [Abstract][Full Text] [Related]
48. Depicting the inhibitory potential of polyphenols from Ghosh R; Chakraborty A; Biswas A; Chowdhuri S J Biomol Struct Dyn; 2022 Jun; 40(9):4110-4121. PubMed ID: 33292085 [TBL] [Abstract][Full Text] [Related]
49. Evaluation of the effects of chlorhexidine and several flavonoids as antiviral purposes on SARS-CoV-2 main protease: molecular docking, molecular dynamics simulation studies. Tatar G; Salmanli M; Dogru Y; Tuzuner T J Biomol Struct Dyn; 2022 Oct; 40(17):7656-7665. PubMed ID: 33749547 [TBL] [Abstract][Full Text] [Related]
50. Virtual screening of natural products inspired in-house library to discover potential lead molecules against the SARS-CoV-2 main protease. Garg A; Goel N; Abhinav N; Varma T; Achari A; Bhattacharjee P; Kamal IM; Chakrabarti S; Ravichandiran V; Reddy AM; Gupta S; Jaisankar P J Biomol Struct Dyn; 2023 Mar; 41(5):2033-2045. PubMed ID: 35043750 [TBL] [Abstract][Full Text] [Related]
51. Green and efficient one-pot three-component synthesis of novel drug-like furo[2,3-d]pyrimidines as potential active site inhibitors and putative allosteric hotspots modulators of both SARS-CoV-2 M Mousavi H; Zeynizadeh B; Rimaz M Bioorg Chem; 2023 Jun; 135():106390. PubMed ID: 37037129 [TBL] [Abstract][Full Text] [Related]
52. Computational molecular interaction between SARS-CoV-2 main protease and theaflavin digallate using free energy perturbation and molecular dynamics. Manish M; Mishra S; Anand A; Subbarao N Comput Biol Med; 2022 Nov; 150():106125. PubMed ID: 36240593 [TBL] [Abstract][Full Text] [Related]
53. Phytochemical Discrimination, Biological Activity and Molecular Docking of Water-Soluble Inhibitors from Idriss H; Siddig B; Maldonado PG; Elkhair HM; Alakhras AI; Abdallah EM; Torres PHS; Elzupir AO Molecules; 2022 Aug; 27(15):. PubMed ID: 35956858 [TBL] [Abstract][Full Text] [Related]
54. Computational analysis of the interactions between Ebselen and derivatives with the active site of the main protease from SARS-CoV-2. Rieder GS; Nogara PA; Omage FB; Duarte T; Dalla Corte CL; da Rocha JBT Comput Biol Chem; 2023 Dec; 107():107956. PubMed ID: 37748316 [TBL] [Abstract][Full Text] [Related]
55. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process. Ishida T; Kato S J Am Chem Soc; 2003 Oct; 125(39):12035-48. PubMed ID: 14505425 [TBL] [Abstract][Full Text] [Related]
56. Structural insights into the substrate-binding site of main protease for the structure-based COVID-19 drug discovery. Firouzi R; Ashouri M; Karimi-Jafari MH Proteins; 2022 May; 90(5):1090-1101. PubMed ID: 35119780 [TBL] [Abstract][Full Text] [Related]
58. Tuning Proton Transfer Thermodynamics in SARS-Cov-2 Main Protease: Implications for Catalysis and Inhibitor Design. Zanetti-Polzi L; Smith MD; Chipot C; Gumbart JC; Lynch DL; Pavlova A; Smith JC; Daidone I ChemRxiv; 2020 Nov; ():. PubMed ID: 33200115 [TBL] [Abstract][Full Text] [Related]
59. Phytonutrient Inhibitors of SARS-CoV-2/NSP5-Encoded Main Protease (M Naidu SAG; Tripathi YB; Shree P; Clemens RA; Naidu AS J Diet Suppl; 2023; 20(2):284-311. PubMed ID: 34821532 [TBL] [Abstract][Full Text] [Related]
60. Understanding the role of water on temperature-dependent structural modifications of SARS CoV-2 main protease binding sites. Venugopal PP; Singh O; Chakraborty D J Mol Liq; 2022 Oct; 363():119867. PubMed ID: 35873078 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]