These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 34163713)
1. On the use of catalysis to bias reaction pathways in out-of-equilibrium systems. van der Helm MP; de Beun T; Eelkema R Chem Sci; 2021 Feb; 12(12):4484-4493. PubMed ID: 34163713 [TBL] [Abstract][Full Text] [Related]
2. Organocatalytic Control over a Fuel-Driven Transient-Esterification Network*. van der Helm MP; Wang CL; Fan B; Macchione M; Mendes E; Eelkema R Angew Chem Int Ed Engl; 2020 Nov; 59(46):20604-20611. PubMed ID: 32700406 [TBL] [Abstract][Full Text] [Related]
3. Photoinitiated Transient Self-Assembly in a Catalytically Driven Chemical Reaction Cycle. Valera JS; López-Acosta Á; Hermans TM Angew Chem Int Ed Engl; 2024 Aug; 63(33):e202406931. PubMed ID: 38770670 [TBL] [Abstract][Full Text] [Related]
4. Recycling in Asymmetric Catalysis. Moberg C Acc Chem Res; 2016 Dec; 49(12):2736-2745. PubMed ID: 27993002 [TBL] [Abstract][Full Text] [Related]
5. Steering Catalytic Selectivity with Atomically Dispersed Metal Electrocatalysts for Renewable Energy Conversion and Commodity Chemical Production. Kim JH; Sa YJ; Lim T; Woo J; Joo SH Acc Chem Res; 2022 Sep; 55(18):2672-2684. PubMed ID: 36067418 [TBL] [Abstract][Full Text] [Related]
6. Transient Host-Guest Complexation To Control Catalytic Activity. van der Helm MP; Li G; Hartono M; Eelkema R J Am Chem Soc; 2022 Jun; 144(21):9465-9471. PubMed ID: 35584968 [TBL] [Abstract][Full Text] [Related]
7. Chemical engines: driving systems away from equilibrium through catalyst reaction cycles. Amano S; Borsley S; Leigh DA; Sun Z Nat Nanotechnol; 2021 Oct; 16(10):1057-1067. PubMed ID: 34625723 [TBL] [Abstract][Full Text] [Related]
8. Clever Nanomaterials Fabrication Techniques Encounter Sustainable C1 Catalysis. Wang Y; Sun J; Tsubaki N Acc Chem Res; 2023 Sep; 56(17):2341-2353. PubMed ID: 37579494 [TBL] [Abstract][Full Text] [Related]
9. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements. Gao W; Hood ZD; Chi M Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240 [TBL] [Abstract][Full Text] [Related]
10. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization. Wulff G; Liu J Acc Chem Res; 2012 Feb; 45(2):239-47. PubMed ID: 21967389 [TBL] [Abstract][Full Text] [Related]
11. Oxidative Dehydrogenation on Nanocarbon: Insights into the Reaction Mechanism and Kinetics via in Situ Experimental Methods. Qi W; Yan P; Su DS Acc Chem Res; 2018 Mar; 51(3):640-648. PubMed ID: 29446621 [TBL] [Abstract][Full Text] [Related]
12. Fuel-Driven and Enzyme-Regulated Redox-Responsive Supramolecular Hydrogels. Jain M; Ravoo BJ Angew Chem Int Ed Engl; 2021 Sep; 60(38):21062-21068. PubMed ID: 34252251 [TBL] [Abstract][Full Text] [Related]
13. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis. Hammarström L Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365 [TBL] [Abstract][Full Text] [Related]
14. Catalysis of Supramolecular Hydrogelation. Trausel F; Versluis F; Maity C; Poolman JM; Lovrak M; van Esch JH; Eelkema R Acc Chem Res; 2016 Jul; 49(7):1440-7. PubMed ID: 27314682 [TBL] [Abstract][Full Text] [Related]
16. Chemical fuels for molecular machinery. Borsley S; Leigh DA; Roberts BMW Nat Chem; 2022 Jul; 14(7):728-738. PubMed ID: 35778564 [TBL] [Abstract][Full Text] [Related]