BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34163857)

  • 21. Can One Measure Resonance Raman Optical Activity?
    Li G; Alshalalfeh M; Yang Y; Cheeseman JR; Bouř P; Xu Y
    Angew Chem Int Ed Engl; 2021 Sep; 60(40):22004-22009. PubMed ID: 34347923
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Excited state dynamics of a PtII diimine complex bearing a naphthalene-diimide electron acceptor.
    Sazanovich IV; Alamiry MA; Best J; Bennett RD; Bouganov OV; Davies ES; Grivin VP; Meijer AJ; Plyusnin VF; Ronayne KL; Shelton AH; Tikhomirov SA; Towrie M; Weinstein JA
    Inorg Chem; 2008 Nov; 47(22):10432-45. PubMed ID: 18939820
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unusual Chiroptical Properties of the Cryptophane-222 Skeleton.
    Pitrat D; Daugey N; Jean M; Vanthuyne N; Wien F; Ducasse L; Calin N; Buffeteau T; Brotin T
    J Phys Chem B; 2016 Dec; 120(49):12650-12659. PubMed ID: 27973824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of ROA and ECD Related to Conformational Changes of Astaxanthin Enantiomers.
    Zajac G; Kaczor A; Buda S; Młynarski J; Frelek J; Dobrowolski JC; Baranska M
    J Phys Chem B; 2015 Sep; 119(37):12193-201. PubMed ID: 26305416
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solvated states of poly-L-alanine α-helix explored by Raman optical activity.
    Yamamoto S; Furukawa T; Bouř P; Ozaki Y
    J Phys Chem A; 2014 May; 118(20):3655-62. PubMed ID: 24758541
    [TBL] [Abstract][Full Text] [Related]  

  • 26. "Watching" a Molecular Twist in a Protein by Raman Optical Activity.
    Matsuo J; Kikukawa T; Fujisawa T; Hoff WD; Unno M
    J Phys Chem Lett; 2020 Oct; 11(20):8579-8584. PubMed ID: 32945678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulation of Raman optical activity of multi-component monosaccharide samples.
    Melcrová A; Kessler J; Bouř P; Kaminský J
    Phys Chem Chem Phys; 2016 Jan; 18(3):2130-42. PubMed ID: 26689801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Raman and ROA analyses of twisted anthracenes: connecting vibrational and electronic/photonic structures.
    Palomo L; Gordillo Gámez F; Bedi A; Gidron O; Casado J; Ramírez FJ
    Phys Chem Chem Phys; 2021 Jun; 23(25):13996-14003. PubMed ID: 34151326
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Raman optical activity of a cyclic dipeptide analyzed by quantum chemical calculations combined with molecular dynamics simulations.
    Urago H; Suga T; Hirata T; Kodama H; Unno M
    J Phys Chem B; 2014 Jun; 118(24):6767-74. PubMed ID: 24873951
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interpretation of Raman and Raman optical activity spectra of a flexible sugar derivative, the gluconic acid anion.
    Kaminský J; Kapitán J; Baumruk V; Bednárová L; Bour P
    J Phys Chem A; 2009 Apr; 113(15):3594-601. PubMed ID: 19309136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chiral recognition
    Machalska E; Hachlica N; Zajac G; Carraro D; Baranska M; Licini G; Bouř P; Zonta C; Kaczor A
    Phys Chem Chem Phys; 2021 Oct; 23(40):23336-23340. PubMed ID: 34633399
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding the surrounding effects on Raman optical activity signatures of a chiral cage system: Cryptophane-PP-111.
    D'haese LCG; Daugey N; Pitrat D; Brotin T; Kapitán J; Liégeois V
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Feb; 306():123484. PubMed ID: 37898056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three types of induced tryptophan optical activity compared in model dipeptides: theory and experiment.
    Hudecová J; Horníček J; Buděšínský M; Šebestík J; Šafařík M; Zhang G; Keiderling TA; Bouř P
    Chemphyschem; 2012 Aug; 13(11):2748-60. PubMed ID: 22706803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vibrational and electronic optical activity of the chiral disulphide group: implications for disulphide bridge conformation.
    Bednárová L; Bour P; Malon P
    Chirality; 2010 May; 22(5):514-26. PubMed ID: 19725095
    [TBL] [Abstract][Full Text] [Related]  

  • 35. All-dielectric chiral-field-enhanced Raman optical activity.
    Xiao TH; Cheng Z; Luo Z; Isozaki A; Hiramatsu K; Itoh T; Nomura M; Iwamoto S; Goda K
    Nat Commun; 2021 May; 12(1):3062. PubMed ID: 34031409
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vibrational optical activity of cysteine in aqueous solution: a comparison of theoretical and experimental spectra.
    Kamiński M; Kudelski A; Pecul M
    J Phys Chem B; 2012 Apr; 116(16):4976-90. PubMed ID: 22452552
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chirality transition in the epoxidation of (-)-alpha-pinene and successive hydrolysis studied by Raman optical activity and DFT.
    Qiu S; Li G; Liu P; Wang C; Feng Z; Li C
    Phys Chem Chem Phys; 2010 Mar; 12(12):3005-13. PubMed ID: 20449393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determining the absolute configuration of two marine compounds using vibrational chiroptical spectroscopy.
    Hopmann KH; Šebestík J; Novotná J; Stensen W; Urbanová M; Svenson J; Svendsen JS; Bouř P; Ruud K
    J Org Chem; 2012 Jan; 77(2):858-69. PubMed ID: 22148737
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Raman optical activity of proteins, carbohydrates and glycoproteins.
    Zhu F; Isaacs NW; Hecht L; Tranter GE; Barron LD
    Chirality; 2006 Feb; 18(2):103-15. PubMed ID: 16385622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New chiral ECD-Raman spectroscopy of atropisomeric naphthalenediimides.
    Machalska E; Zając G; Baranska M; Bouř P; Kaczorek D; Kawęcki R; Rode JE; Lyczko K; Dobrowolski JC
    Chem Commun (Camb); 2022 Apr; 58(28):4524-4527. PubMed ID: 35302568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.