BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 34163896)

  • 1. Synthesis of 2-oxoglutarate derivatives and their evaluation as cosubstrates and inhibitors of human aspartate/asparagine-β-hydroxylase.
    Brewitz L; Nakashima Y; Schofield CJ
    Chem Sci; 2020 Dec; 12(4):1327-1342. PubMed ID: 34163896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic parameters of human aspartate/asparagine-β-hydroxylase suggest that it has a possible function in oxygen sensing.
    Brewitz L; Tumber A; Schofield CJ
    J Biol Chem; 2020 Jun; 295(23):7826-7838. PubMed ID: 32107312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2-Oxoglutarate derivatives can selectively enhance or inhibit the activity of human oxygenases.
    Nakashima Y; Brewitz L; Tumber A; Salah E; Schofield CJ
    Nat Commun; 2021 Nov; 12(1):6478. PubMed ID: 34759269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorinated derivatives of pyridine-2,4-dicarboxylate are potent inhibitors of human 2-oxoglutarate dependent oxygenases.
    Brewitz L; Nakashima Y; Tumber A; Salah E; Schofield CJ
    J Fluor Chem; 2021 Jul; 247():109804. PubMed ID: 34219804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small-molecule active pharmaceutical ingredients of approved cancer therapeutics inhibit human aspartate/asparagine-β-hydroxylase.
    Brewitz L; Tumber A; Zhang X; Schofield CJ
    Bioorg Med Chem; 2020 Oct; 28(20):115675. PubMed ID: 33069066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of Novel Pyridine-Carboxylates as Small-Molecule Inhibitors of Human Aspartate/Asparagine-β-Hydroxylase.
    Brewitz L; Tumber A; Thalhammer A; Salah E; Christensen KE; Schofield CJ
    ChemMedChem; 2020 Jul; 15(13):1139-1149. PubMed ID: 32330361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aspartate/asparagine-β-hydroxylase: a high-throughput mass spectrometric assay for discovery of small molecule inhibitors.
    Brewitz L; Tumber A; Pfeffer I; McDonough MA; Schofield CJ
    Sci Rep; 2020 May; 10(1):8650. PubMed ID: 32457455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Oxygenase Variants Employing a Single Protein Fe
    Brasnett A; Pfeffer I; Brewitz L; Chowdhury R; Nakashima Y; Tumber A; McDonough MA; Schofield CJ
    Angew Chem Int Ed Engl; 2021 Jun; 60(26):14657-14663. PubMed ID: 33887099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined proteomic and biochemical analyses redefine the consensus sequence requirement for epidermal growth factor-like domain hydroxylation.
    Brewitz L; Onisko BC; Schofield CJ
    J Biol Chem; 2022 Aug; 298(8):102129. PubMed ID: 35700824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural and synthetic 2-oxoglutarate derivatives are substrates for oncogenic variants of human isocitrate dehydrogenase 1 and 2.
    Liu X; Reinbold R; Liu S; Herold RA; Rabe P; Duclos S; Yadav RB; Abboud MI; Thieffine S; Armstrong FA; Brewitz L; Schofield CJ
    J Biol Chem; 2023 Feb; 299(2):102873. PubMed ID: 36621625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aspartate/asparagine-β-hydroxylase crystal structures reveal an unexpected epidermal growth factor-like domain substrate disulfide pattern.
    Pfeffer I; Brewitz L; Krojer T; Jensen SA; Kochan GT; Kershaw NJ; Hewitson KS; McNeill LA; Kramer H; Münzel M; Hopkinson RJ; Oppermann U; Handford PA; McDonough MA; Schofield CJ
    Nat Commun; 2019 Oct; 10(1):4910. PubMed ID: 31659163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of PHYHD1A, a 2OG oxygenase related to phytanoyl-CoA hydroxylase.
    Zhang Z; Kochan GT; Ng SS; Kavanagh KL; Oppermann U; Schofield CJ; McDonough MA
    Biochem Biophys Res Commun; 2011 May; 408(4):553-8. PubMed ID: 21530488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic and inhibition studies on human Jumonji-C (JmjC) domain-containing protein 5.
    Tumber A; Salah E; Brewitz L; Corner TP; Schofield CJ
    RSC Chem Biol; 2023 Jun; 4(6):399-413. PubMed ID: 37292060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-guided optimisation of
    Corner TP; Teo RZR; Wu Y; Salah E; Nakashima Y; Fiorini G; Tumber A; Brasnett A; Holt-Martyn JP; Figg WD; Zhang X; Brewitz L; Schofield CJ
    Chem Sci; 2023 Nov; 14(43):12098-12120. PubMed ID: 37969593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale examination of functional and sequence diversity of 2-oxoglutarate/Fe(II)-dependent oxygenases in Metazoa.
    Jia B; Tang K; Chun BH; Jeon CO
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt A):2922-2933. PubMed ID: 28847508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein Hydroxylation Catalyzed by 2-Oxoglutarate-dependent Oxygenases.
    Markolovic S; Wilkins SE; Schofield CJ
    J Biol Chem; 2015 Aug; 290(34):20712-20722. PubMed ID: 26152730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human 2-oxoglutarate-dependent oxygenases: nutrient sensors, stress responders, and disease mediators.
    Fletcher SC; Coleman ML
    Biochem Soc Trans; 2020 Oct; 48(5):1843-1858. PubMed ID: 32985654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adventures in Defining Roles of Oxygenases in the Regulation of Protein Biosynthesis.
    Walport LJ; Schofield CJ
    Chem Rec; 2018 Dec; 18(12):1760-1781. PubMed ID: 30151867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative view of 2-oxoglutarate/Fe(II)-dependent oxygenase diversity and functions in bacteria.
    Jia B; Jia X; Kim KH; Jeon CO
    Biochim Biophys Acta Gen Subj; 2017 Feb; 1861(2):323-334. PubMed ID: 27919802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of human phytanoyl-CoA 2-hydroxylase identifies molecular mechanisms of Refsum disease.
    McDonough MA; Kavanagh KL; Butler D; Searls T; Oppermann U; Schofield CJ
    J Biol Chem; 2005 Dec; 280(49):41101-10. PubMed ID: 16186124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.