These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34163906)

  • 1. Mechanism of inhibition of SARS-CoV-2 M
    Arafet K; Serrano-Aparicio N; Lodola A; Mulholland AJ; González FV; Świderek K; Moliner V
    Chem Sci; 2020 Nov; 12(4):1433-1444. PubMed ID: 34163906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Warhead Modulations on the Covalent Inhibition of SARS-CoV-2 M
    Martí S; Arafet K; Lodola A; Mulholland AJ; Świderek K; Moliner V
    ACS Catal; 2022 Jan; 12(1):698-708. PubMed ID: 35036042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covalent and non-covalent binding free energy calculations for peptidomimetic inhibitors of SARS-CoV-2 main protease.
    Awoonor-Williams E; Abu-Saleh AAA
    Phys Chem Chem Phys; 2021 Mar; 23(11):6746-6757. PubMed ID: 33711090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating the binding energetics of reversible covalent inhibitors of the SARS-CoV-2 main protease: an
    Awoonor-Williams E
    Phys Chem Chem Phys; 2022 Oct; 24(38):23391-23401. PubMed ID: 36128834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microscopic description of SARS-CoV-2 main protease inhibition with Michael acceptors. Strategies for improving inhibitor design.
    Ramos-Guzmán CA; Ruiz-Pernía JJ; Tuñón I
    Chem Sci; 2021 Jan; 12(10):3489-3496. PubMed ID: 34163622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Silico Drug Repositioning to Target the SARS-CoV-2 Main Protease as Covalent Inhibitors Employing a Combined Structure-Based Virtual Screening Strategy of Pharmacophore Models and Covalent Docking.
    Vázquez-Mendoza LH; Mendoza-Figueroa HL; García-Vázquez JB; Correa-Basurto J; García-Machorro J
    Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the binding and covalent inhibition mechanism of PF-07321332 to SARS-CoV-2 M
    Ngo ST; Nguyen TH; Tung NT; Mai BK
    RSC Adv; 2022 Jan; 12(6):3729-3737. PubMed ID: 35425393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic investigation of SARS-CoV-2 main protease to accelerate design of covalent inhibitors.
    Kim H; Hauner D; Laureanti JA; Agustin K; Raugei S; Kumar N
    Sci Rep; 2022 Dec; 12(1):21037. PubMed ID: 36470873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SARS-CoV and SARS-CoV-2 main protease residue interaction networks change when bound to inhibitor N3.
    Griffin JWD
    J Struct Biol; 2020 Sep; 211(3):107575. PubMed ID: 32653646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing the molecular mechanisms of proteolysis of SARS-CoV-2 M
    Świderek K; Moliner V
    Chem Sci; 2020 Jun; 11(39):10626-10630. PubMed ID: 34094317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomistic-Level Description of the Covalent Inhibition of SARS-CoV-2 Papain-like Protease.
    Hognon C; Marazzi M; García-Iriepa C
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into the catalytic mechanism of the SARS-CoV-2 main protease: an ONIOM QM/MM approach.
    Fernandes HS; Sousa SF; Cerqueira NMFSA
    Mol Divers; 2022 Jun; 26(3):1373-1381. PubMed ID: 34169450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational discovery of small drug-like compounds as potential inhibitors of SARS-CoV-2 main protease.
    Andrianov AM; Kornoushenko YV; Karpenko AD; Bosko IP; Tuzikov AV
    J Biomol Struct Dyn; 2021 Sep; 39(15):5779-5791. PubMed ID: 32662333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SARS-CoV-2 M
    Bharadwaj S; Azhar EI; Kamal MA; Bajrai LH; Dubey A; Jha K; Yadava U; Kang SG; Dwivedi VD
    J Biomol Struct Dyn; 2022 Apr; 40(6):2769-2784. PubMed ID: 33150855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering the binding mechanism of inhibitors of the SARS-CoV-2 main protease through multiple replica accelerated molecular dynamics simulations and free energy landscapes.
    Li M; Liu X; Zhang S; Liang S; Zhang Q; Chen J
    Phys Chem Chem Phys; 2022 Sep; 24(36):22129-22143. PubMed ID: 36082845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Effective Therapeutic Molecule from Natural Sources against Coronavirus Protease.
    Fadaka AO; Sibuyi NRS; Martin DR; Klein A; Madiehe A; Meyer M
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Aloe-derived natural products as prospective lead scaffolds for SARS-CoV-2 main protease (M
    Hicks EG; Kandel SE; Lampe JN
    Bioorg Med Chem Lett; 2022 Jun; 66():128732. PubMed ID: 35427739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective covalent targeting of SARS-CoV-2 main protease by enantiopure chlorofluoroacetamide.
    Yamane D; Onitsuka S; Re S; Isogai H; Hamada R; Hiramoto T; Kawanishi E; Mizuguchi K; Shindo N; Ojida A
    Chem Sci; 2022 Mar; 13(10):3027-3034. PubMed ID: 35432850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possibility of HIV-1 protease inhibitors-clinical trial drugs as repurposed drugs for SARS-CoV-2 main protease: a molecular docking, molecular dynamics and binding free energy simulation study.
    Ancy I; Sivanandam M; Kumaradhas P
    J Biomol Struct Dyn; 2021 Sep; 39(15):5368-5375. PubMed ID: 32627689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated metabolomic and proteomic approach for the identification of covalent inhibitors of the main protease (M
    Baron G; Borella S; Della Vedova L; Vittorio S; Vistoli G; Carini M; Aldini G; Altomare A
    Talanta; 2023 Jan; 252():123824. PubMed ID: 36027618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.