These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34163950)

  • 1. BonDNet: a graph neural network for the prediction of bond dissociation energies for charged molecules.
    Wen M; Blau SM; Spotte-Smith EWC; Dwaraknath S; Persson KA
    Chem Sci; 2020 Dec; 12(5):1858-1868. PubMed ID: 34163950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost.
    St John PC; Guan Y; Kim Y; Kim S; Paton RS
    Nat Commun; 2020 May; 11(1):2328. PubMed ID: 32393773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A big data approach to the ultra-fast prediction of DFT-calculated bond energies.
    Qu X; Latino DA; Aires-de-Sousa J
    J Cheminform; 2013; 5():34. PubMed ID: 23849655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predissociation Measurements of Bond Dissociation Energies.
    Morse MD
    Acc Chem Res; 2019 Jan; 52(1):119-126. PubMed ID: 30596416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the C4-H bond dissociation energies of NADH models and their radical cations in acetonitrile.
    Zhu XQ; Li HR; Li Q; Ai T; Lu JY; Yang Y; Cheng JP
    Chemistry; 2003 Feb; 9(4):871-80. PubMed ID: 12584702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bond dissociation energies in second-row compounds.
    Grant DJ; Matus MH; Switzer JR; Dixon DA; Francisco JS; Christe KO
    J Phys Chem A; 2008 Apr; 112(14):3145-56. PubMed ID: 18351757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of Engineered and Learned Molecular Representations in Predicting Organic Reactivity, Selectivity, and Chemical Properties.
    Gallegos LC; Luchini G; St John PC; Kim S; Paton RS
    Acc Chem Res; 2021 Feb; 54(4):827-836. PubMed ID: 33534534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explainable Solvation Free Energy Prediction Combining Graph Neural Networks with Chemical Intuition.
    Low K; Coote ML; Izgorodina EI
    J Chem Inf Model; 2022 Nov; 62(22):5457-5470. PubMed ID: 36317829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Landscape of the structure-O-H bond dissociation energy relationship of oximes and hydroxylamines.
    Dao R; Wang X; Chen K; Zhao C; Yao J; Li H
    Phys Chem Chem Phys; 2017 Aug; 19(33):22309-22320. PubMed ID: 28805227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate bond energies of hydrocarbons from complete basis set extrapolated multi-reference singles and doubles configuration interaction.
    Oyeyemi VB; Pavone M; Carter EA
    Chemphyschem; 2011 Dec; 12(17):3354-64. PubMed ID: 22052831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmark DFT studies on C-CN homolytic cleavage and screening the substitution effect on bond dissociation energy.
    Kosar N; Ayub K; Gilani MA; Mahmood T
    J Mol Model; 2019 Jan; 25(2):47. PubMed ID: 30690660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning to Predict Homolytic Dissociation Energies of C-H Bonds: Calibration of DFT-based Models with Experimental Data.
    Li W; Luan Y; Zhang Q; Aires-de-Sousa J
    Mol Inform; 2023 Jan; 42(1):e2200193. PubMed ID: 36167940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bond dissociation energies of the diatomic late transition metal sulfides: RuS, OsS, CoS, RhS, IrS, and PtS.
    Sorensen JJ; Tieu E; Morse MD
    J Chem Phys; 2020 Jun; 152(24):244305. PubMed ID: 32610999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Study on Homolytic Bond Energies of the Ag-X (X = C, O, and H) Complexes and Hammett-Type Analysis of Reactivity.
    Wu L; Tang SY; Zhou S
    ACS Omega; 2021 Dec; 6(50):34904-34911. PubMed ID: 34963973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning Prediction of Nine Molecular Properties Based on the SMILES Representation of the QM9 Quantum-Chemistry Dataset.
    Pinheiro GA; Mucelini J; Soares MD; Prati RC; Da Silva JLF; Quiles MG
    J Phys Chem A; 2020 Nov; 124(47):9854-9866. PubMed ID: 33174750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bond dissociation energies of low-valent lanthanide hydroxides: lower limits from ion-molecule reactions and comparisons with fluorides.
    Parker ML; Jian J; Gibson JK
    Phys Chem Chem Phys; 2021 May; 23(19):11314-11326. PubMed ID: 33973581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gadolinium (Gd) Oxide, Carbide, and Carbonyl Cation Bond Energies and Evaluation of the Gd + O → GdO
    Demireva M; Kim J; Armentrout PB
    J Phys Chem A; 2016 Nov; 120(43):8550-8563. PubMed ID: 27767308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical approaches to estimating homolytic bond dissociation energies of organocopper and organosilver compounds.
    Rijs NJ; Brookes NJ; O'Hair RA; Yates BF
    J Phys Chem A; 2012 Sep; 116(35):8910-7. PubMed ID: 22924458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A general QSPR protocol for the prediction of atomic/inter-atomic properties: a fragment based graph convolutional neural network (F-GCN).
    Gao P; Zhang J; Qiu H; Zhao S
    Phys Chem Chem Phys; 2021 Jun; 23(23):13242-13249. PubMed ID: 34086015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition from hydrogen atom to hydride abstraction by Mn4O4(O2PPh2)6 versus [Mn4O4(O2PPh2)6]+: O-H bond dissociation energies and the formation of Mn4O3(OH)(O2PPh2)6.
    Carrell TG; Bourles E; Lin M; Dismukes GC
    Inorg Chem; 2003 May; 42(9):2849-58. PubMed ID: 12716176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.