These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Coacervate Droplets for Synthetic Cells. Lin Z; Beneyton T; Baret JC; Martin N Small Methods; 2023 Dec; 7(12):e2300496. PubMed ID: 37462244 [TBL] [Abstract][Full Text] [Related]
6. Active coacervate droplets as a model for membraneless organelles and protocells. Donau C; Späth F; Sosson M; Kriebisch BAK; Schnitter F; Tena-Solsona M; Kang HS; Salibi E; Sattler M; Mutschler H; Boekhoven J Nat Commun; 2020 Oct; 11(1):5167. PubMed ID: 33056997 [TBL] [Abstract][Full Text] [Related]
7. How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments. Smokers IBA; Visser BS; Slootbeek AD; Huck WTS; Spruijt E Acc Chem Res; 2024 Jul; 57(14):1885-1895. PubMed ID: 38968602 [TBL] [Abstract][Full Text] [Related]
8. Enzymatic control over coacervation. Nakashima KK; André AAM; Spruijt E Methods Enzymol; 2021; 646():353-389. PubMed ID: 33453932 [TBL] [Abstract][Full Text] [Related]
9. The Role of Chemically Innocent Polyanions in Active, Chemically Fueled Complex Coacervate Droplets. Späth F; Maier AS; Stasi M; Bergmann AM; Halama K; Wenisch M; Rieger B; Boekhoven J Angew Chem Int Ed Engl; 2023 Oct; 62(41):e202309318. PubMed ID: 37549224 [TBL] [Abstract][Full Text] [Related]
10. Reversible generation of coacervate droplets in an enzymatic network. Nakashima KK; Baaij JF; Spruijt E Soft Matter; 2018 Jan; 14(3):361-367. PubMed ID: 29199758 [TBL] [Abstract][Full Text] [Related]
11. Phase Transitions in Chemically Fueled, Multiphase Complex Coacervate Droplets. Donau C; Späth F; Stasi M; Bergmann AM; Boekhoven J Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202211905. PubMed ID: 36067054 [TBL] [Abstract][Full Text] [Related]
12. Effect of Polypeptide Complex Coacervate Microenvironment on Protonation of a Guest Molecule. Choi S; Knoerdel AR; Sing CE; Keating CD J Phys Chem B; 2023 Jul; 127(26):5978-5991. PubMed ID: 37350455 [TBL] [Abstract][Full Text] [Related]
13. Phase-specific RNA accumulation and duplex thermodynamics in multiphase coacervate models for membraneless organelles. Choi S; Meyer MO; Bevilacqua PC; Keating CD Nat Chem; 2022 Oct; 14(10):1110-1117. PubMed ID: 35773489 [TBL] [Abstract][Full Text] [Related]
14. Evolution and Single-Droplet Analysis of Fuel-Driven Compartments by Droplet-Based Microfluidics. Bergmann AM; Donau C; Späth F; Jahnke K; Göpfrich K; Boekhoven J Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202203928. PubMed ID: 35657164 [TBL] [Abstract][Full Text] [Related]
15. Programmable Zwitterionic Droplets as Biomolecular Sorters and Model of Membraneless Organelles. Capasso Palmiero U; Paganini C; Kopp MRG; Linsenmeier M; Küffner AM; Arosio P Adv Mater; 2022 Jan; 34(4):e2104837. PubMed ID: 34664748 [TBL] [Abstract][Full Text] [Related]
16. Liquid Crystal Coacervates Composed of Short Double-Stranded DNA and Cationic Peptides. Fraccia TP; Jia TZ ACS Nano; 2020 Nov; 14(11):15071-15082. PubMed ID: 32852935 [TBL] [Abstract][Full Text] [Related]
17. pH-Controlled Coacervate-Membrane Interactions within Liposomes. Last MGF; Deshpande S; Dekker C ACS Nano; 2020 Apr; 14(4):4487-4498. PubMed ID: 32239914 [TBL] [Abstract][Full Text] [Related]
18. Peptide-based coacervates in therapeutic applications. Ma L; Fang X; Wang C Front Bioeng Biotechnol; 2022; 10():1100365. PubMed ID: 36686257 [TBL] [Abstract][Full Text] [Related]
19. Biomolecular Chemistry in Liquid Phase Separated Compartments. Nakashima KK; Vibhute MA; Spruijt E Front Mol Biosci; 2019; 6():21. PubMed ID: 31001538 [TBL] [Abstract][Full Text] [Related]
20. Understanding How Coacervates Drive Reversible Small Molecule Reactions to Promote Molecular Complexity. Jacobs MI; Jira ER; Schroeder CM Langmuir; 2021 Dec; 37(49):14323-14335. PubMed ID: 34856104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]