These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 34164043)

  • 21. Multiphase Complex Coacervate Droplets.
    Lu T; Spruijt E
    J Am Chem Soc; 2020 Feb; 142(6):2905-2914. PubMed ID: 31958956
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic Control of Functional Coacervates in Synthetic Cells.
    Nair KS; Radhakrishnan S; Bajaj H
    ACS Synth Biol; 2023 Jul; 12(7):2168-2177. PubMed ID: 37337618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complex coacervates as artificial membraneless organelles and protocells.
    Deng NN
    Biomicrofluidics; 2020 Sep; 14(5):051301. PubMed ID: 32922586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reversible pH-Responsive Coacervate Formation in Lipid Vesicles Activates Dormant Enzymatic Reactions.
    Love C; Steinkühler J; Gonzales DT; Yandrapalli N; Robinson T; Dimova R; Tang TD
    Angew Chem Int Ed Engl; 2020 Apr; 59(15):5950-5957. PubMed ID: 31943629
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interfacial Assembly of Bacterial Microcompartment Shell Proteins in Aqueous Multiphase Systems.
    Abeysinghe AADT; Young EJ; Rowland AT; Dunshee LC; Urandur S; Sullivan MO; Kerfeld CA; Keating CD
    Small; 2024 Apr; 20(15):e2308390. PubMed ID: 38037673
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzyme-active liquid coacervate microdroplets as artificial membraneless organelles for intracellular ROS scavenging.
    Chen Y; Yuan M; Zhang Y; Zhou S; Wang K; Wu Z; Liu J
    Biomater Sci; 2022 Aug; 10(16):4588-4595. PubMed ID: 35792669
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoswitchable Phase Separation and Oligonucleotide Trafficking in DNA Coacervate Microdroplets.
    Martin N; Tian L; Spencer D; Coutable-Pennarun A; Anderson JLR; Mann S
    Angew Chem Int Ed Engl; 2019 Oct; 58(41):14594-14598. PubMed ID: 31408263
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complex Coacervate Materials as Artificial Cells.
    Cook AB; Novosedlik S; van Hest JCM
    Acc Mater Res; 2023 Mar; 4(3):287-298. PubMed ID: 37009061
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spontaneous membrane-less multi-compartmentalization
    Moreau NG; Martin N; Gobbo P; Tang TD; Mann S
    Chem Commun (Camb); 2020 Oct; 56(84):12717-12720. PubMed ID: 32945817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of macromolecular crowding on RNA/spermine complex coacervation and oligonucleotide compartmentalization.
    Marianelli AM; Miller BM; Keating CD
    Soft Matter; 2018 Jan; 14(3):368-378. PubMed ID: 29265152
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanostructured Multiphase Condensation of Complex Coacervates in Polymerization-Induced Electrostatic Self-Assembly.
    Li C; Wang Y; Wang X; Gao Z; Ma L; Lu X; Cai Y
    ACS Macro Lett; 2021 Jul; 10(7):780-785. PubMed ID: 35549188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-enzymatic oligonucleotide ligation in coacervate protocells sustains compartment-content coupling.
    Fraccia TP; Martin N
    Nat Commun; 2023 May; 14(1):2606. PubMed ID: 37160869
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonspherical Coacervate Shapes in an Enzyme-Driven Active System.
    Spoelstra WK; van der Sluis EO; Dogterom M; Reese L
    Langmuir; 2020 Mar; 36(8):1956-1964. PubMed ID: 31995710
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Elastin-like polypeptide coacervates as reversibly triggerable compartments for synthetic cells.
    Chen C; Ganar KA; de Haas RJ; Jarnot N; Hogeveen E; de Vries R; Deshpande S
    Commun Chem; 2024 Sep; 7(1):198. PubMed ID: 39232074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular Design of Chemically Fueled Peptide-Polyelectrolyte Coacervate-Based Assemblies.
    Späth F; Donau C; Bergmann AM; Kränzlein M; Synatschke CV; Rieger B; Boekhoven J
    J Am Chem Soc; 2021 Mar; 143(12):4782-4789. PubMed ID: 33750125
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controlled Supramolecular Polymerization via Bioinspired, Liquid-Liquid Phase Separation of Monomers.
    Patra S; Chandrabhas S; Dhiman S; George SJ
    J Am Chem Soc; 2024 May; 146(18):12577-12586. PubMed ID: 38683934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles.
    Aumiller WM; Keating CD
    Nat Chem; 2016 Feb; 8(2):129-37. PubMed ID: 26791895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of wet-dry cycling on the phase behavior and compartmentalization properties of complex coacervates.
    Fares HM; Marras AE; Ting JM; Tirrell MV; Keating CD
    Nat Commun; 2020 Oct; 11(1):5423. PubMed ID: 33110067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNA-Based Coacervates as a Model for Membraneless Organelles: Formation, Properties, and Interfacial Liposome Assembly.
    Aumiller WM; Pir Cakmak F; Davis BW; Keating CD
    Langmuir; 2016 Oct; 32(39):10042-10053. PubMed ID: 27599198
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Active coacervate droplets are protocells that grow and resist Ostwald ripening.
    Nakashima KK; van Haren MHI; André AAM; Robu I; Spruijt E
    Nat Commun; 2021 Jun; 12(1):3819. PubMed ID: 34155210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.