These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 34164045)

  • 1. Photoredox-enabled 1,2-dialkylation of α-substituted acrylates
    Kleinmans R; Will LE; Schwarz JL; Glorius F
    Chem Sci; 2021 Jan; 12(8):2816-2822. PubMed ID: 34164045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Merging Carbonyl Addition with Photocatalysis.
    Huang HM; Bellotti P; Glorius F
    Acc Chem Res; 2022 Apr; 55(8):1135-1147. PubMed ID: 35357118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic Utilization of α-Aminoalkyl Radicals and Related Species in Visible Light Photoredox Catalysis.
    Nakajima K; Miyake Y; Nishibayashi Y
    Acc Chem Res; 2016 Sep; 49(9):1946-56. PubMed ID: 27505299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocatalytic Difunctionalization of Vinyl Ureas by Radical Addition Polar Truce-Smiles Rearrangement Cascades.
    Abrams R; Clayden J
    Angew Chem Int Ed Engl; 2020 Jul; 59(28):11600-11606. PubMed ID: 32227575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of Photoredox-Catalyzed Giese-Type Reaction for the Synthesis of Chiral Quaternary α-Aryl Amino Acid Derivatives via Clayden Rearrangement.
    Ji P; Chen J; Meng X; Gao F; Dong Y; Xu H; Wang W
    J Org Chem; 2022 Nov; 87(21):14706-14714. PubMed ID: 36264622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visible-Light-Induced Photoredox 1,2-Dialkylation of Styrenes with α-Carbonyl Alkyl Bromides and Pyridin-1-ium Salts.
    Xu CH; Lv GF; Qin JH; Xu XH; Li JH
    J Org Chem; 2024 Jan; 89(1):281-290. PubMed ID: 38109762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper-Catalyzed Reductive Ireland-Claisen Rearrangements of Propargylic Acrylates and Allylic Allenoates.
    Guo S; Wong KC; Scheeff S; He Z; Chan WTK; Low KH; Chiu P
    J Org Chem; 2022 Jan; 87(1):429-452. PubMed ID: 34918517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic enantioselective reductive domino alkyl arylation of acrylates via nickel/photoredox catalysis.
    Qian P; Guan H; Wang YE; Lu Q; Zhang F; Xiong D; Walsh PJ; Mao J
    Nat Commun; 2021 Nov; 12(1):6613. PubMed ID: 34785647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts.
    Yu XY; Zhao QQ; Chen J; Xiao WJ; Chen JR
    Acc Chem Res; 2020 May; 53(5):1066-1083. PubMed ID: 32286794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visible-Light Photoredox-Catalyzed Hydroalkoxymethylation of Activated Alkenes Using α-Silyl Ethers as Alkoxymethyl Radical Equivalents.
    Khatun N; Kim MJ; Woo SK
    Org Lett; 2018 Oct; 20(19):6239-6243. PubMed ID: 30226389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visible-Light Photoredox-Catalyzed Direct Carboxylation of Tertiary C(sp
    Liu Y; Xue GH; He Z; Yue JP; Pan M; Song L; Zhang W; Ye JH; Yu DG
    J Am Chem Soc; 2024 Oct; ():. PubMed ID: 39374105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tandem Insertion/[3,3]-Sigmatropic Rearrangement Involving the Formation of Silyl Ketene Acetals by Insertion of Rhodium Carbenes into S-Si Bonds.
    Combs JR; Lai YC; Van Vranken DL
    Org Lett; 2021 Apr; 23(8):2841-2845. PubMed ID: 33792331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoredox-Catalyzed Multicomponent Synthesis of Functionalized γ-Amino Butyric Acids via Reductive Radical Polar Crossover.
    Venditto NJ; Boerth JA
    Org Lett; 2023 May; 25(19):3429-3434. PubMed ID: 37163325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective 1,2-Aryl-Aminoalkylation of Alkenes Enabled by Metallaphotoredox Catalysis.
    Zheng S; Chen Z; Hu Y; Xi X; Liao Z; Li W; Yuan W
    Angew Chem Int Ed Engl; 2020 Oct; 59(41):17910-17916. PubMed ID: 32633062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divergent functionalization of alkenes enabled by photoredox activation of CDFA and α-halo carboxylic acids.
    Giri R; Zhilin E; Katayev D
    Chem Sci; 2024 Jul; 15(27):10659-10667. PubMed ID: 38994427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisiting Aromatic Claisen Rearrangement Using Unstable Aryl Sulfonium/Iodonium Species: The Strategy of Breaking Up the Whole into Parts.
    Liang Y; Peng B
    Acc Chem Res; 2022 Aug; 55(15):2103-2122. PubMed ID: 35861672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Unnatural α-Amino Acid Derivatives via Photoredox Activation of Inert C(sp
    Babawale F; Murugesan K; Narobe R; König B
    Org Lett; 2022 Jul; 24(26):4793-4797. PubMed ID: 35749614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of Phosphoranyl Radicals via Photoredox Catalysis Enables Voltage-Independent Activation of Strong C-O Bonds.
    Stache EE; Ertel AB; Tomislav R; Doyle AG
    ACS Catal; 2018 Dec; 8(12):11134-11139. PubMed ID: 31367474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. α-Amino Acids and Peptides as Bifunctional Reagents: Carbocarboxylation of Activated Alkenes via Recycling CO
    Liao LL; Cao GM; Jiang YX; Jin XH; Hu XL; Chruma JJ; Sun GQ; Gui YY; Yu DG
    J Am Chem Soc; 2021 Feb; 143(7):2812-2821. PubMed ID: 33561344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Enantioselective C(sp
    Shu X; Huan L; Huang Q; Huo H
    J Am Chem Soc; 2020 Nov; 142(45):19058-19064. PubMed ID: 33125845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.