These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 34164082)
21. Synergic Effect of Active Sites in Zinc-Modified ZSM-5 Zeolites as Revealed by High-Field Solid-State NMR Spectroscopy. Qi G; Wang Q; Xu J; Trébosc J; Lafon O; Wang C; Amoureux JP; Deng F Angew Chem Int Ed Engl; 2016 Dec; 55(51):15826-15830. PubMed ID: 27860033 [TBL] [Abstract][Full Text] [Related]
22. Stable Fe/ZSM-5 Nanosheet Zeolite Catalysts for the Oxidation of Benzene to Phenol. Meng L; Zhu X; Hensen EJM ACS Catal; 2017 Apr; 7(4):2709-2719. PubMed ID: 28413693 [TBL] [Abstract][Full Text] [Related]
23. Construction of Bifunctional Co/H-ZSM-5 Catalysts for the Hydrodeoxygenation of Stearic Acid to Diesel-Range Alkanes. Wu G; Zhang N; Dai W; Guan N; Li L ChemSusChem; 2018 Jul; 11(13):2179-2188. PubMed ID: 29701318 [TBL] [Abstract][Full Text] [Related]
24. Investigating the Influence of Fe Speciation on N Richards N; Nowicka E; Carter JH; Morgan DJ; Dummer NF; Golunski S; Hutchings GJ Top Catal; 2018; 61(18):1983-1992. PubMed ID: 30930588 [TBL] [Abstract][Full Text] [Related]
25. Transition metals-incorporated zeolites as environmental catalysts for indoor air ozone decomposition. Mohamed EF; Awad G; Zaitan H; Andriantsiferana C; Manero MH Environ Technol; 2018 Apr; 39(7):878-886. PubMed ID: 28368211 [TBL] [Abstract][Full Text] [Related]
26. Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts. Mahyuddin MH; Shiota Y; Staykov A; Yoshizawa K Acc Chem Res; 2018 Oct; 51(10):2382-2390. PubMed ID: 30207444 [TBL] [Abstract][Full Text] [Related]
27. Catalytic and mechanistic insights of the low-temperature selective oxidation of methane over Cu-promoted Fe-ZSM-5. Hammond C; Jenkins RL; Dimitratos N; Lopez-Sanchez JA; ab Rahim MH; Forde MM; Thetford A; Murphy DM; Hagen H; Stangland EE; Moulijn JM; Taylor SH; Willock DJ; Hutchings GJ Chemistry; 2012 Dec; 18(49):15735-45. PubMed ID: 23150452 [TBL] [Abstract][Full Text] [Related]
28. Active Ensembles in Methane Dehydroaromatization over Molybdenum/ZSM-5 Zeolite Identified by 2D Gao W; Wang Q; Qi G; Liang J; Wang C; Xu J; Deng F Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202306133. PubMed ID: 37261941 [TBL] [Abstract][Full Text] [Related]
29. Reactivity of C1 surface species formed in methane activation on Zn-modified H-ZSM-5 zeolite. Wu JF; Wang WD; Xu J; Deng F; Wang W Chemistry; 2010 Dec; 16(47):14016-25. PubMed ID: 21038333 [TBL] [Abstract][Full Text] [Related]
30. Isothermal Cyclic Conversion of Methane into Methanol over Copper-Exchanged Zeolite at Low Temperature. Tomkins P; Mansouri A; Bozbag SE; Krumeich F; Park MB; Alayon EM; Ranocchiari M; van Bokhoven JA Angew Chem Int Ed Engl; 2016 Apr; 55(18):5467-71. PubMed ID: 27010863 [TBL] [Abstract][Full Text] [Related]
31. Effect of iron loading on the performance and structure of Fe/ZSM-5 catalyst for the selective catalytic reduction of NO with NH Wang XT; Hu HP; Zhang XY; Su XX; Yang XD Environ Sci Pollut Res Int; 2019 Jan; 26(2):1706-1715. PubMed ID: 30448951 [TBL] [Abstract][Full Text] [Related]
32. The active site of low-temperature methane hydroxylation in iron-containing zeolites. Snyder BE; Vanelderen P; Bols ML; Hallaert SD; Böttger LH; Ungur L; Pierloot K; Schoonheydt RA; Sels BF; Solomon EI Nature; 2016 Aug; 536(7616):317-21. PubMed ID: 27535535 [TBL] [Abstract][Full Text] [Related]
33. Solar-Driven Reforming of Methane and Nitrogen to Methanol and Ammonium on Iron-Modified Zeolite under Ambient Conditions in Water. Ren M; Li J; Huang M; Chen D; Li X; Yan X; An Q; Sun S Inorg Chem; 2023 Sep; 62(36):14804-14814. PubMed ID: 37644618 [TBL] [Abstract][Full Text] [Related]
34. Electro-assisted methane oxidation to formic acid via in-situ cathodically generated H Kim J; Kim JH; Oh C; Yun H; Lee E; Oh HS; Park JH; Hwang YJ Nat Commun; 2023 Aug; 14(1):4704. PubMed ID: 37543676 [TBL] [Abstract][Full Text] [Related]
35. Mechanistic insight into the effect of active site motif structures on direct oxidation of methane to methanol over Cu-ZSM-5. Dai C; Zhang Y; Liu N; Yu G; Wang N; Xu R; Chen B Phys Chem Chem Phys; 2023 Sep; 25(36):24894-24903. PubMed ID: 37681261 [TBL] [Abstract][Full Text] [Related]
36. NH3-SCR performance of fresh and hydrothermally aged Fe-ZSM-5 in standard and fast selective catalytic reduction reactions. Shi X; Liu F; Xie L; Shan W; He H Environ Sci Technol; 2013 Apr; 47(7):3293-8. PubMed ID: 23477804 [TBL] [Abstract][Full Text] [Related]
37. Non-oxidative Coupling of Methane to Ethylene Using Mo Sheng H; Schreiner EP; Zheng W; Lobo RF Chemphyschem; 2018 Feb; 19(4):504-511. PubMed ID: 29045043 [TBL] [Abstract][Full Text] [Related]
38. Spectroscopic Identification of the α-Fe/α-O Active Site in Fe-CHA Zeolite for the Low-Temperature Activation of the Methane C-H Bond. Bols ML; Hallaert SD; Snyder BER; Devos J; Plessers D; Rhoda HM; Dusselier M; Schoonheydt RA; Pierloot K; Solomon EI; Sels BF J Am Chem Soc; 2018 Sep; 140(38):12021-12032. PubMed ID: 30169036 [TBL] [Abstract][Full Text] [Related]
39. Structural characterization of a non-heme iron active site in zeolites that hydroxylates methane. Snyder BER; Böttger LH; Bols ML; Yan JJ; Rhoda HM; Jacobs AB; Hu MY; Zhao J; Alp EE; Hedman B; Hodgson KO; Schoonheydt RA; Sels BF; Solomon EI Proc Natl Acad Sci U S A; 2018 May; 115(18):4565-4570. PubMed ID: 29610304 [TBL] [Abstract][Full Text] [Related]
40. Efficient catalysts of surface hydrophobic Cu-BTC with coordinatively unsaturated Cu(I) sites for the direct oxidation of methane. Li W; Li Z; Zhang H; Liu P; Xie Z; Song W; Liu B; Zhao Z Proc Natl Acad Sci U S A; 2023 Mar; 120(10):e2206619120. PubMed ID: 36848552 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]