These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 34164590)
1. HCOOH in the remote atmosphere: Constraints from Atmospheric Tomography (ATom) airborne observations. Chen X; Millet DB; Neuman JA; Veres PR; Ray EA; Commane R; Daube BC; McKain K; Schwarz JP; Katich JM; Froyd KD; Schill GP; Kim MJ; Crounse JD; Allen HM; Apel EC; Hornbrook RS; Blake DR; Nault BA; Campuzano-Jost P; Jimenez JL; Dibb JE ACS Earth Space Chem; 2021 Jun; 5(6):1436-1454. PubMed ID: 34164590 [TBL] [Abstract][Full Text] [Related]
2. A Large Underestimate of Formic Acid from Tropical Fires: Constraints from Space-Borne Measurements. Chaliyakunnel S; Millet DB; Wells KC; Cady-Pereira KE; Shephard MW Environ Sci Technol; 2016 Jun; 50(11):5631-40. PubMed ID: 27149080 [TBL] [Abstract][Full Text] [Related]
3. Constraining remote oxidation capacity with ATom observations. Travis KR; Heald CL; Allen HM; Apel EC; Arnold SR; Blake DR; Brune WH; Chen X; Commane R; Crounse JD; Daube BC; Diskin GS; Elkins JW; Evans MJ; Hall SR; Hintsa EJ; Hornbrook RS; Kasibhatla PS; Kim MJ; Luo G; McKain K; Millet DB; Moore FL; Peischl J; Ryerson TB; Sherwen T; Thames AB; Ullmann K; Wang X; Wennberg PO; Wolfe GM; Yu F Atmos Chem Phys; 2020 Jul; 20(13):7753-7781. PubMed ID: 33688335 [TBL] [Abstract][Full Text] [Related]
4. Remote Aerosol Simulated During the Atmospheric Tomography (ATom) Campaign and Implications for Aerosol Lifetime. Gao CY; Heald CL; Katich JM; Luo G; Yu F J Geophys Res Atmos; 2022 Nov; 127(22):e2022JD036524. PubMed ID: 36582200 [TBL] [Abstract][Full Text] [Related]
5. HCOOH measurements from space: TES retrieval algorithm and observed global distribution. Cady-Pereira KE; Chaliyakunnel S; Shephard MW; Millet DB; Luo M; Wells KC Atmos Meas Tech; 2014 Jul; 7(7):2297-2311. PubMed ID: 33717364 [TBL] [Abstract][Full Text] [Related]
6. Oxidation of Volatile Organic Compounds as the Major Source of Formic Acid in a Mixed Forest Canopy. Alwe HD; Millet DB; Chen X; Raff JD; Payne ZC; Fledderman K Geophys Res Lett; 2019 Mar; 46(5):2940-2948. PubMed ID: 31068737 [TBL] [Abstract][Full Text] [Related]
7. Atmospheric Acetaldehyde: Importance of Air-Sea Exchange and a Missing Source in the Remote Troposphere. Wang S; Apel EC; Hornbrook RS; Hills A; Emmons LK; Tilmes S; Lamarque JF; Jimenez JL; Campuzano-Jost P; Nault BA; Crounse JD; Wennberg PO; Ryerson TB; Thompson CR; Peischl J; Moore F; Nance D; Hall B; Elkins J; Tanner D; Gregory Huey L; Hall SR; Ullmann K; Orlando JJ; Tyndall GS; Flocke FM; Ray E; Hanisco TF; Wolfe GM; St Clair J; Commane R; Daube B; Barletta B; Blake DR; Weinzierl B; Dollner M; Conley A; Vitt F; Wofsy SC; Riemer DD Geophys Res Lett; 2019 May; 46(10):5601-5613. PubMed ID: 32606484 [TBL] [Abstract][Full Text] [Related]
8. Aromatic Photo-oxidation, A New Source of Atmospheric Acidity. Wang S; Newland MJ; Deng W; Rickard AR; Hamilton JF; Muñoz A; Ródenas M; Vázquez MM; Wang L; Wang X Environ Sci Technol; 2020 Jul; 54(13):7798-7806. PubMed ID: 32479720 [TBL] [Abstract][Full Text] [Related]
9. Multiannual observations of acetone, methanol, and acetaldehyde in remote tropical atlantic air: implications for atmospheric OVOC budgets and oxidative capacity. Read KA; Carpenter LJ; Arnold SR; Beale R; Nightingale PD; Hopkins JR; Lewis AC; Lee JD; Mendes L; Pickering SJ Environ Sci Technol; 2012 Oct; 46(20):11028-39. PubMed ID: 22963451 [TBL] [Abstract][Full Text] [Related]
10. Elemental mercury concentrations and fluxes in the tropical atmosphere and ocean. Soerensen AL; Mason RP; Balcom PH; Jacob DJ; Zhang Y; Kuss J; Sunderland EM Environ Sci Technol; 2014 Oct; 48(19):11312-9. PubMed ID: 25171182 [TBL] [Abstract][Full Text] [Related]
11. The role of the ocean in the global atmospheric budget of acetone. Fischer EV; Jacob DJ; Millet DB; Yantosca RM; Mao J Geophys Res Lett; 2012 Jan; 39(1):. PubMed ID: 33758438 [TBL] [Abstract][Full Text] [Related]
12. Large contribution of biomass burning emissions to ozone throughout the global remote troposphere. Bourgeois I; Peischl J; Neuman JA; Brown SS; Thompson CR; Aikin KC; Allen HM; Angot H; Apel EC; Baublitz CB; Brewer JF; Campuzano-Jost P; Commane R; Crounse JD; Daube BC; DiGangi JP; Diskin GS; Emmons LK; Fiore AM; Gkatzelis GI; Hills A; Hornbrook RS; Huey LG; Jimenez JL; Kim M; Lacey F; McKain K; Murray LT; Nault BA; Parrish DD; Ray E; Sweeney C; Tanner D; Wofsy SC; Ryerson TB Proc Natl Acad Sci U S A; 2021 Dec; 118(52):. PubMed ID: 34930838 [TBL] [Abstract][Full Text] [Related]
13. Importance of secondary sources in the atmospheric budgets of formic and acetic acids. Paulot F; Wunch D; Crounse JD; Toon GC; Millet DB; DeCarlo PF; Vigouroux C; Deutscher NM; González Abad G; Notholt J; Warneke T; Hannigan JW; Warneke C; de Gouw JA; Dunlea EJ; De Mazière M; Griffith DWT; Bernath P; Jimenez JL; Wennberg PO Atmos Chem Phys; 2011 Mar; 11(5):1989-2013. PubMed ID: 33758586 [TBL] [Abstract][Full Text] [Related]
14. Airborne observations over the North Atlantic Ocean reveal the importance of gas-phase urea in the atmosphere. Matthews E; Bannan TJ; Khan MAH; Shallcross DE; Stark H; Browne EC; Archibald AT; Mehra A; Bauguitte SJ; Reed C; Thamban NM; Wu H; Barker P; Lee J; Carpenter LJ; Yang M; Bell TG; Allen G; Jayne JT; Percival CJ; McFiggans G; Gallagher M; Coe H Proc Natl Acad Sci U S A; 2023 Jun; 120(25):e2218127120. PubMed ID: 37314935 [TBL] [Abstract][Full Text] [Related]
15. Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations. Wolfe GM; Nicely JM; St Clair JM; Hanisco TF; Liao J; Oman LD; Brune WB; Miller D; Thames A; González Abad G; Ryerson TB; Thompson CR; Peischl J; McCain K; Sweeney C; Wennberg PO; Kim M; Crounse JD; Hall SR; Ullmann K; Diskin G; Bui P; Chang C; Dean-Day J Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11171-11180. PubMed ID: 31110019 [TBL] [Abstract][Full Text] [Related]
16. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Obrist D; Kirk JL; Zhang L; Sunderland EM; Jiskra M; Selin NE Ambio; 2018 Mar; 47(2):116-140. PubMed ID: 29388126 [TBL] [Abstract][Full Text] [Related]
17. A Coupled Global Atmosphere-Ocean Model for Air-Sea Exchange of Mercury: Insights into Wet Deposition and Atmospheric Redox Chemistry. Zhang Y; Horowitz H; Wang J; Xie Z; Kuss J; Soerensen AL Environ Sci Technol; 2019 May; 53(9):5052-5061. PubMed ID: 30946578 [TBL] [Abstract][Full Text] [Related]
18. On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America. Chen X; Millet DB; Singh HB; Wisthaler A; Apel EC; Atlas EL; Blake DR; Bourgeois I; Brown SS; Crounse JD; de Gouw JA; Flocke FM; Fried A; Heikes BG; Hornbrook RS; Mikoviny T; Min KE; Müller M; Neuman JA; O'Sullivan DW; Peischl J; Pfister GG; Richter D; Roberts JM; Ryerson TB; Shertz SR; Thompson CR; Treadaway V; Veres PR; Walega J; Warneke C; Washenfelder RA; Weibring P; Yuan B Atmos Chem Phys; 2019 Jul; 19(14):9097-9123. PubMed ID: 33688334 [TBL] [Abstract][Full Text] [Related]
19. Emission Ratios for Ammonia and Formic Acid and Observations of Peroxy Acetyl Nitrate (PAN) and Ethylene in Biomass Burning Smoke as Seen by the Tropospheric Emission Spectrometer (TES). Alvarado MJ; Cady-Pereira KE; Xiao Y; Millet DB; Payne VH Atmosphere (Basel); 2011 Dec; 2(4):633-654. PubMed ID: 33758673 [TBL] [Abstract][Full Text] [Related]
20. Photo-tautomerization of acetaldehyde as a photochemical source of formic acid in the troposphere. Shaw MF; Sztáray B; Whalley LK; Heard DE; Millet DB; Jordan MJT; Osborn DL; Kable SH Nat Commun; 2018 Jul; 9(1):2584. PubMed ID: 29968712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]