These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 34164806)

  • 1. Estimating simazine-treated area in watersheds based on annual stream loads.
    Lerch RN; Willett CD
    J Environ Qual; 2021 Sep; 50(5):1184-1195. PubMed ID: 34164806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloro-triazine transport to streams-evaluating methods for partitioning deisopropylatrazine sources.
    Lerch RN; Willett CD
    Sci Total Environ; 2019 Dec; 697():133931. PubMed ID: 31479907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling field-scale and watershed models for regulatory modeling of pesticide aquatic exposures in streams.
    Ghebremichael L; Chen W; Jacobson A; Roy C; Perkins DB; Brain R
    Integr Environ Assess Manag; 2022 Nov; 18(6):1678-1693. PubMed ID: 35212130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaching and degradation of corn and soybean pesticides in an Oxisol of the Brazilian Cerrados.
    Laabs V; Amelung W; Pinto A; Altstaedt A; Zech W
    Chemosphere; 2000 Nov; 41(9):1441-9. PubMed ID: 11057581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds.
    Winchell MF; Peranginangin N; Srinivasan R; Chen W
    Integr Environ Assess Manag; 2018 May; 14(3):358-368. PubMed ID: 29193759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal-spatial patterns of three types of pesticide loadings in a middle-high latitude agricultural watershed.
    Ouyang W; Cai G; Tysklind M; Yang W; Hao F; Liu H
    Water Res; 2017 Oct; 122():377-386. PubMed ID: 28622630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicted impact of transgenic, herbicidetolerant corn on drinking water quality in vulnerable watersheds of the mid-western USA.
    Wauchope RD; Estes TL; Allen R; Baker JL; Hornsby AG; Jones RL; Richards RP; Gustafson DI
    Pest Manag Sci; 2002 Feb; 58(2):146-60. PubMed ID: 11852639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of scale on the behavior of atrazine in surface waters.
    Capel PD; Larson SJ
    Environ Sci Technol; 2001 Feb; 35(4):648-57. PubMed ID: 11349273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Causal factors for pesticide trends in streams of the United States: Atrazine and deethylatrazine.
    Ryberg KR; Stone WW; Baker NT
    J Environ Qual; 2020 Jan; 49(1):152-162. PubMed ID: 33016367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors controlling spatial and temporal patterns of multiple pesticide compounds in groundwater (Hesbaye chalk aquifer, Belgium).
    Hakoun V; Orban P; Dassargues A; Brouyère S
    Environ Pollut; 2017 Apr; 223():185-199. PubMed ID: 28139324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Watershed vulnerability to herbicide transport in northern Missouri and southern Iowa streams.
    Lerch RN; Blanchard PE
    Environ Sci Technol; 2003 Dec; 37(24):5518-27. PubMed ID: 14717159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence and load of selected herbicides and metabolites in the lower Mississippi River.
    Clark GM; Goolsby DA
    Sci Total Environ; 2000 Apr; 248(2-3):101-13. PubMed ID: 10805231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing winter-time herbicide behavior and exports in urban, rural, and mixed-use watersheds.
    Parajulee A; Lei YD; Cao X; McLagan DS; Yeung LWY; Mitchell CPJ; Wania F
    Environ Sci Process Impacts; 2018 May; 20(5):767-779. PubMed ID: 29578561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption properties of greenwaste biochar for two triazine pesticides.
    Zheng W; Guo M; Chow T; Bennett DN; Rajagopalan N
    J Hazard Mater; 2010 Sep; 181(1-3):121-6. PubMed ID: 20510513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pesticides in the surface waters of the Camanducaia River watershed, Brazil.
    Barizon RRM; Figueiredo RO; de Souza Dutra DRC; Regitano JB; Ferracini VL
    J Environ Sci Health B; 2020; 55(3):283-292. PubMed ID: 31778093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Typical pesticides diffuse loading and degradation pattern differences under the impacts of climate and land-use variations.
    Ouyang W; Hao X; Tysklind M; Yang W; Lin C; Wang A
    Environ Int; 2020 Jun; 139():105717. PubMed ID: 32283357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residues of atrazine and N-deethylated atrazine in water from five agricultural watersheds in Québec.
    Muir DC; Yoo JY; Baker BE
    Arch Environ Contam Toxicol; 1978; 7(2):221-35. PubMed ID: 677946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial and temporal trends and flow dynamics of glyphosate and other pesticides within an agricultural watershed in Argentina.
    Pérez DJ; Okada E; De Gerónimo E; Menone ML; Aparicio VC; Costa JL
    Environ Toxicol Chem; 2017 Dec; 36(12):3206-3216. PubMed ID: 28631831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A regional assessment of chemicals of concern in surface waters of four Midwestern United States national parks.
    Elliott SM; VanderMeulen DD
    Sci Total Environ; 2017 Feb; 579():1726-1735. PubMed ID: 27932214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of regression methodology with low-frequency water quality sampling to estimate constituent loads for ephemeral watersheds in Texas.
    Toor GS; Harmel RD; Haggard BE; Schmidt G
    J Environ Qual; 2008; 37(5):1847-54. PubMed ID: 18689746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.