These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34164885)

  • 1. Constraints on potential enzyme activities in thermokarst bogs: Implications for the carbon balance of peatlands following thaw.
    Heffernan L; Jassey VEJ; Frederickson M; MacKenzie MD; Olefeldt D
    Glob Chang Biol; 2021 Oct; 27(19):4711-4726. PubMed ID: 34164885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands.
    Jones MC; Harden J; O'Donnell J; Manies K; Jorgenson T; Treat C; Ewing S
    Glob Chang Biol; 2017 Mar; 23(3):1109-1127. PubMed ID: 27362936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lichen, moss and peat control of C, nutrient and trace metal regime in lakes of permafrost peatlands.
    Shirokova LS; Chupakov AV; Ivanova IS; Moreva OY; Zabelina SA; Shutskiy NA; Loiko SV; Pokrovsky OS
    Sci Total Environ; 2021 Aug; 782():146737. PubMed ID: 33838368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant organic matter inputs exert a strong control on soil organic matter decomposition in a thawing permafrost peatland.
    Wilson RM; Hough MA; Verbeke BA; Hodgkins SB; ; Chanton JP; Saleska SD; Rich VI; Tfaily MM
    Sci Total Environ; 2022 May; 820():152757. PubMed ID: 35031367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw.
    Voigt C; Marushchak ME; Mastepanov M; Lamprecht RE; Christensen TR; Dorodnikov M; Jackowicz-Korczyński M; Lindgren A; Lohila A; Nykänen H; Oinonen M; Oksanen T; Palonen V; Treat CC; Martikainen PJ; Biasi C
    Glob Chang Biol; 2019 May; 25(5):1746-1764. PubMed ID: 30681758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch.
    Anthony KM; Zimov SA; Grosse G; Jones MC; Anthony PM; Chapin FS; Finlay JC; Mack MC; Davydov S; Frenzel P; Frolking S
    Nature; 2014 Jul; 511(7510):452-6. PubMed ID: 25043014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permafrost collapse alters soil carbon stocks, respiration, CH4 , and N2O in upland tundra.
    Abbott BW; Jones JB
    Glob Chang Biol; 2015 Dec; 21(12):4570-87. PubMed ID: 26301544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling plant litter quantity to a novel metric for litter quality explains C storage changes in a thawing permafrost peatland.
    Hough M; McCabe S; Vining SR; Pickering Pedersen E; Wilson RM; Lawrence R; Chang KY; Bohrer G; ; Riley WJ; Crill PM; Varner RK; Blazewicz SJ; Dorrepaal E; Tfaily MM; Saleska SR; Rich VI
    Glob Chang Biol; 2022 Feb; 28(3):950-968. PubMed ID: 34727401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decade of experimental permafrost thaw reduces turnover of young carbon and increases losses of old carbon, without affecting the net carbon balance.
    Olid C; Klaminder J; Monteux S; Johansson M; Dorrepaal E
    Glob Chang Biol; 2020 Oct; 26(10):5886-5898. PubMed ID: 32681580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats.
    Treat CC; Wollheim WM; Varner RK; Grandy AS; Talbot J; Frolking S
    Glob Chang Biol; 2014 Aug; 20(8):2674-86. PubMed ID: 24616169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wildfire as a major driver of recent permafrost thaw in boreal peatlands.
    Gibson CM; Chasmer LE; Thompson DK; Quinton WL; Flannigan MD; Olefeldt D
    Nat Commun; 2018 Aug; 9(1):3041. PubMed ID: 30072751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Widespread recent ecosystem state shifts in high-latitude peatlands of northeastern Canada and implications for carbon sequestration.
    Magnan G; Sanderson NK; Piilo S; Pratte S; Väliranta M; van Bellen S; Zhang H; Garneau M
    Glob Chang Biol; 2022 Mar; 28(5):1919-1934. PubMed ID: 34882914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permafrost Thaw Increases Methylmercury Formation in Subarctic Fennoscandia.
    Tarbier B; Hugelius G; Kristina Sannel AB; Baptista-Salazar C; Jonsson S
    Environ Sci Technol; 2021 May; 55(10):6710-6717. PubMed ID: 33902281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental modeling of thaw lake water evolution in discontinuous permafrost zone: Role of peat, lichen leaching and ground fire.
    Manasypov RM; Shirokova LS; Pokrovsky OS
    Sci Total Environ; 2017 Feb; 580():245-257. PubMed ID: 28011026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permafrost condition determines plant community composition and community-level foliar functional traits in a boreal peatland.
    Standen KM; Baltzer JL
    Ecol Evol; 2021 Aug; 11(15):10133-10146. PubMed ID: 34367564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial Community Structure and Methane Cycling Potential along a Thermokarst Pond-Peatland Continuum.
    Vigneron A; Cruaud P; Bhiry N; Lovejoy C; Vincent WF
    Microorganisms; 2019 Oct; 7(11):. PubMed ID: 31652931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of permafrost-affected peatlands in the southern limit of the European Russian cryolithozone and their vulnerability to future warming.
    Pastukhov A; Knoblauch C; Beer C; Ryzhova I; Kaverin D
    Sci Total Environ; 2022 Jul; 828():154350. PubMed ID: 35263609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The long-term fate of permafrost peatlands under rapid climate warming.
    Swindles GT; Morris PJ; Mullan D; Watson EJ; Turner TE; Roland TP; Amesbury MJ; Kokfelt U; Schoning K; Pratte S; Gallego-Sala A; Charman DJ; Sanderson N; Garneau M; Carrivick JL; Woulds C; Holden J; Parry L; Galloway JM
    Sci Rep; 2015 Dec; 5():17951. PubMed ID: 26647837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic carbon, and major and trace elements reside in labile low-molecular form in the ground ice of permafrost peatlands: a case study of colloids in peat ice of Western Siberia.
    Lim AG; Loiko SV; Kuzmina DM; Krickov IV; Shirokova LS; Kulizhsky SP; Pokrovsky OS
    Environ Sci Process Impacts; 2022 Sep; 24(9):1443-1459. PubMed ID: 35226006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of carbon and nitrogen accumulation by vegetation in pristine bogs of southern Patagonia.
    Schuster W; Knorr KH; Blodau C; Gałka M; Borken W; Pancotto VA; Kleinebecker T
    Sci Total Environ; 2022 Mar; 810():151293. PubMed ID: 34756900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.