These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34165047)

  • 21. The effects of different speed training protocols on sprint acceleration kinematics and muscle strength and power in field sport athletes.
    Lockie RG; Murphy AJ; Schultz AB; Knight TJ; Janse de Jonge XA
    J Strength Cond Res; 2012 Jun; 26(6):1539-50. PubMed ID: 21912294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gender-Related Differences in Mechanics of the Sprint Start and Sprint Acceleration of Top National-Level Sprinters.
    Mirkov DM; Knezevic OM; Garcia-Ramos A; Čoh M; Šarabon N
    Int J Environ Res Public Health; 2020 Sep; 17(18):. PubMed ID: 32899837
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acute Effects of Progressive Sled Loading on Resisted Sprint Performance and Kinematics.
    Pareja-Blanco F; Pereira LA; Freitas TT; Alcaraz PE; Reis VP; Guerriero A; Arruda AFS; Zabaloy S; Sáez De Villarreal E; Loturco I
    J Strength Cond Res; 2022 Jun; 36(6):1524-1531. PubMed ID: 32614156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Association of Step Width with Accelerated Sprinting Performance and Ground Reaction Force.
    Nagahara R; Mizutani M; Matsuo A; Kanehisa H; Fukunaga T
    Int J Sports Med; 2017 Jul; 38(7):534-540. PubMed ID: 28482364
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resisted sprints do not acutely enhance sprinting performance.
    Whelan N; OʼRegan C; Harrison AJ
    J Strength Cond Res; 2014 Jul; 28(7):1858-66. PubMed ID: 24378662
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of sprint acceleration stance kinetics on velocity and step kinematics in field sport athletes.
    Lockie RG; Murphy AJ; Schultz AB; Jeffriess MD; Callaghan SJ
    J Strength Cond Res; 2013 Sep; 27(9):2494-503. PubMed ID: 23222091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acute effects of wearable thigh and shank loading on spatiotemporal and kinematic variables during maximum velocity sprinting.
    Hurst O; Kilduff LP; Johnston M; Cronin JB; Bezodis NE
    Sports Biomech; 2022 Nov; 21(10):1234-1248. PubMed ID: 32329417
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of weighted sled towing on sprinting effectiveness, power and force-velocity relationship.
    Pantoja PD; Carvalho AR; Ribas LR; Peyré-Tartaruga LA
    PLoS One; 2018; 13(10):e0204473. PubMed ID: 30289907
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase analysis in maximal sprinting: an investigation of step-to-step technical changes between the initial acceleration, transition and maximal velocity phases.
    von Lieres Und Wilkau HC; Irwin G; Bezodis NE; Simpson S; Bezodis IN
    Sports Biomech; 2020 Apr; 19(2):141-156. PubMed ID: 29972337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of Step-by-Step Kinematics of Elite Sprinters' Unresisted and Resisted 10-m Sprints Measured With Optojump or Musclelab.
    van den Tillaar R
    J Strength Cond Res; 2021 May; 35(5):1419-1424. PubMed ID: 30299391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimal Loading for Maximizing Power During Sled-Resisted Sprinting.
    Cross MR; Brughelli M; Samozino P; Brown SR; Morin JB
    Int J Sports Physiol Perform; 2017 Sep; 12(8):1069-1077. PubMed ID: 28051333
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acute kinematic and kinetic adaptations to wearable resistance during vertical jumping.
    Macadam P; Simperingham KD; Cronin JB; Couture G; Evison C
    Eur J Sport Sci; 2017 Jun; 17(5):555-562. PubMed ID: 28316257
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic and kinematic determinants of female sprint performance.
    Gleadhill S; Nagahara R
    J Sports Sci; 2021 Mar; 39(6):609-617. PubMed ID: 33143572
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Running mechanics and leg muscle activity patterns during early and late acceleration phases of repeated treadmill sprints in male recreational athletes.
    Girard O; Brocherie F; Morin JB; Millet GP; Hansen C
    Eur J Appl Physiol; 2020 Dec; 120(12):2785-2796. PubMed ID: 32980967
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of lower limb light-weight wearable resistance on running biomechanics.
    Busch A; Trounson K; Browne P; Robertson S
    J Biomech; 2022 Jan; 130():110903. PubMed ID: 34922193
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relationships between ground reaction impulse and sprint acceleration performance in team sport athletes.
    Kawamori N; Nosaka K; Newton RU
    J Strength Cond Res; 2013 Mar; 27(3):568-73. PubMed ID: 22531618
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparison between the force-velocity relationships of unloaded and sled-resisted sprinting: single vs. multiple trial methods.
    Cross MR; Samozino P; Brown SR; Morin JB
    Eur J Appl Physiol; 2018 Mar; 118(3):563-571. PubMed ID: 29302753
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characteristics of sprint performance in college football players.
    Brechue WF; Mayhew JL; Piper FC
    J Strength Cond Res; 2010 May; 24(5):1169-78. PubMed ID: 20386124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Running mechanical alterations during repeated treadmill sprints in hot versus hypoxic environments. A pilot study.
    Girard O; Brocherie F; Morin JB; Millet GP
    J Sports Sci; 2016; 34(12):1190-8. PubMed ID: 26473996
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Power-Force-Velocity Profiling of Sprinting Athletes: Methodological and Practical Considerations When Using Timing Gates.
    Haugen TA; Breitschädel F; Samozino P
    J Strength Cond Res; 2020 Jun; 34(6):1769-1773. PubMed ID: 30273283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.