These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34165047)

  • 41. On the Importance of "Front-Side Mechanics" in Athletics Sprinting.
    Haugen T; Danielsen J; Alnes LO; McGhie D; Sandbakk Ø; Ettema G
    Int J Sports Physiol Perform; 2018 Apr; 13(4):420-427. PubMed ID: 28872386
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Does restricting arm motion compromise short sprint running performance?
    Brooks LC; Weyand PG; Clark KP
    Gait Posture; 2022 May; 94():114-118. PubMed ID: 35276457
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of three types of resisted sprint training devices on the kinematics of sprinting at maximum velocity.
    Alcaraz PE; Palao JM; Elvira JL; Linthorne NP
    J Strength Cond Res; 2008 May; 22(3):890-7. PubMed ID: 18438225
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinetic and kinematic characteristics of sprint running with a weighted vest.
    Gleadhill S; Yuki N; Wada T; Nagahara R
    J Biomech; 2021 Sep; 126():110655. PubMed ID: 34358902
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinematic alterations due to different loading schemes in early acceleration sprint performance from starting blocks.
    Maulder PS; Bradshaw EJ; Keogh JW
    J Strength Cond Res; 2008 Nov; 22(6):1992-2002. PubMed ID: 18978610
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sprinting and dribbling differences in young soccer players: a kinematic approach.
    Gioldasis A; Theodorou A; Bekris E; Katis A; Smirniotou A
    Res Sports Med; 2022; 30(6):603-615. PubMed ID: 33993825
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Advances in Sprint Acceleration Profiling for Field-Based Team-Sport Athletes: Utility, Reliability, Validity and Limitations.
    Simperingham KD; Cronin JB; Ross A
    Sports Med; 2016 Nov; 46(11):1619-1645. PubMed ID: 26914267
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The contribution of step characteristics to sprint running performance in high-level male and female athletes.
    Debaere S; Jonkers I; Delecluse C
    J Strength Cond Res; 2013 Jan; 27(1):116-24. PubMed ID: 22395270
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Acceleration mechanics during forward and backward running: A comparison of step kinematics and kinetics over the first 20 m.
    Uthoff A; Zois J; Van Den Tillaar R; Nagahara R
    J Sports Sci; 2021 Aug; 39(16):1816-1821. PubMed ID: 33711913
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sprint Assessment Using Machine Learning and a Wearable Accelerometer.
    Gurchiek RD; Rupasinghe Arachchige Don HS; Pelawa Watagoda LCR; McGinnis RS; van Werkhoven H; Needle AR; McBride JM; Arnholt AT
    J Appl Biomech; 2019 Apr; 35(2):164-169. PubMed ID: 30676153
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differences in step characteristics and linear kinematics between rugby players and sprinters during initial sprint acceleration.
    Wild JJ; Bezodis IN; North JS; Bezodis NE
    Eur J Sport Sci; 2018 Nov; 18(10):1327-1337. PubMed ID: 29996724
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biomechanical analysis of two standing sprint start techniques.
    LeDune JA; Nesser TW; Finch A; Zakrajsek RA
    J Strength Cond Res; 2012 Dec; 26(12):3449-53. PubMed ID: 22266644
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On the Existence of Step-To-Step Breakpoint Transitions in Accelerated Sprinting.
    Ettema G; McGhie D; Danielsen J; Sandbakk Ø; Haugen T
    PLoS One; 2016; 11(7):e0159701. PubMed ID: 27467387
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Profiling Sprint Mechanics by Leg Preference and Position in Rugby Union Athletes.
    Brown SR; Brughelli M; Cross MR
    Int J Sports Med; 2016 Oct; 37(11):890-7. PubMed ID: 27410766
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Effects of Resisted Post-Activation Sprint Performance Enhancement in Elite Female Sprinters.
    Matusiński A; Pietraszewski P; Krzysztofik M; Gołaś A
    Front Physiol; 2021; 12():651659. PubMed ID: 33746784
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Resisted Sled Sprint Kinematics: The Acute Effect of Load and Sporting Population.
    Osterwald KM; Kelly DT; Comyns TM; Catháin CÓ
    Sports (Basel); 2021 Sep; 9(10):. PubMed ID: 34678918
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetic demands of sprinting shift across the acceleration phase: Novel analysis of entire force waveforms.
    Colyer SL; Nagahara R; Salo AIT
    Scand J Med Sci Sports; 2018 Jul; 28(7):1784-1792. PubMed ID: 29630747
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improvement in sprint start performance by modulating an initial loading location on the starting blocks.
    Nagahara R; Gleadhill S; Ohshima Y
    J Sports Sci; 2020 Nov; 38(21):2437-2445. PubMed ID: 32608346
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Association of Sprint Performance With Ground Reaction Forces During Acceleration and Maximal Speed Phases in a Single Sprint.
    Nagahara R; Mizutani M; Matsuo A; Kanehisa H; Fukunaga T
    J Appl Biomech; 2018 Apr; 34(2):104-110. PubMed ID: 28952906
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Force-Velocity-Power Profiling During Weighted-Vest Sprinting in Soccer.
    Carlos-Vivas J; Marín-Cascales E; Freitas TT; Perez-Gomez J; Alcaraz PE
    Int J Sports Physiol Perform; 2019 Jul; 14(6):747–756. PubMed ID: 30427229
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.