These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34165047)

  • 61. Maximum acceleration performance of professional soccer players in linear sprints: Is there a direct connection with change-of-direction ability?
    Loturco I; A Pereira L; T Freitas T; E Alcaraz P; Zanetti V; Bishop C; Jeffreys I
    PLoS One; 2019; 14(5):e0216806. PubMed ID: 31086386
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A simple method for computing sprint acceleration kinetics from running velocity data: Replication study with improved design.
    Morin JB; Samozino P; Murata M; Cross MR; Nagahara R
    J Biomech; 2019 Sep; 94():82-87. PubMed ID: 31376978
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Increased sprint performance with false step in collegiate athletes trained to forward step.
    Schwenzfeier A; Rhoades JL; Fitzgerald J; Whitehead J; Short M
    Sports Biomech; 2022 Sep; 21(8):958-965. PubMed ID: 32131694
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Changes in mechanical properties of sprinting during repeated sprint in elite rugby sevens athletes.
    Jiménez-Reyes P; Cross M; Ross A; Samozino P; Brughelli M; Gill N; Morin JB
    Eur J Sport Sci; 2019 Jun; 19(5):585-594. PubMed ID: 30409072
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Comparison of Step-by-Step Kinematics in Repeated 30-m Sprints in Female Soccer Players.
    van den Tillaar R
    J Strength Cond Res; 2018 Jul; 32(7):1923-1928. PubMed ID: 29337832
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Interrelationships between different loads in resisted sprints, half-squat 1 RM and kinematic variables in trained athletes.
    Martínez-Valencia MA; González-Ravé JM; Santos-García DJ; Alcaraz Ramón PE; Navarro-Valdivielso F
    Eur J Sport Sci; 2014; 14 Suppl 1():S18-24. PubMed ID: 24444204
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Kinematics of the thorax and pelvis during accelerated sprinting.
    Nagahara R; Matsubayashi T; Matsuo A; Zushi K
    J Sports Med Phys Fitness; 2018 Sep; 58(9):1253-1263. PubMed ID: 28462572
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Running patterns and force-velocity sprinting profiles in elite training young soccer players: A cross-sectional study.
    Zhang Q; Pommerell F; Owen A; Trama R; Martin C; Hautier CA
    Eur J Sport Sci; 2021 Dec; 21(12):1718-1726. PubMed ID: 33331801
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effects of upper and lower body wearable resistance on spatio-temporal and kinetic parameters during running.
    Couture GA; Simperingham KD; Cronin JB; Lorimer AV; Kilding AE; Macadam P
    Sports Biomech; 2020 Oct; 19(5):633-651. PubMed ID: 30325270
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Uphill sprinting load- and force-velocity profiling: Assessment and potential applications.
    Delaney JA; McKay BA; Radcliffe J; Benton DT; Samozino P; Morin JB; Duthie GM
    J Sports Sci; 2022 Feb; 40(3):281-287. PubMed ID: 34727844
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Factors that differentiate acceleration ability in field sport athletes.
    Lockie RG; Murphy AJ; Knight TJ; Janse de Jonge XA
    J Strength Cond Res; 2011 Oct; 25(10):2704-14. PubMed ID: 21878822
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effects of resisted sprint training on acceleration with three different loads accounting for 5, 12.5, and 20% of body mass.
    Bachero-Mena B; González-Badillo JJ
    J Strength Cond Res; 2014 Oct; 28(10):2954-60. PubMed ID: 24736770
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Kinematic and kinetic comparisons of elite and well-trained sprinters during sprint start.
    Slawinski J; Bonnefoy A; Levêque JM; Ontanon G; Riquet A; Dumas R; Chèze L
    J Strength Cond Res; 2010 Apr; 24(4):896-905. PubMed ID: 19935105
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The difference is in the start: impact of timing and start procedure on sprint running performance.
    Haugen TA; Tønnessen E; Seiler SK
    J Strength Cond Res; 2012 Feb; 26(2):473-9. PubMed ID: 22233797
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effects of weighted vests and sled towing on sprint kinematics.
    Cronin J; Hansen K; Kawamori N; McNair P
    Sports Biomech; 2008 May; 7(2):160-72. PubMed ID: 18610770
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Acute effects of lower limb wearable resistance on horizontal deceleration and change of direction biomechanics.
    Philipp NM; Johnson QR; Cabarkapa D; Fry AC
    PLoS One; 2024; 19(9):e0308536. PubMed ID: 39250471
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Resisted Sled Sprint Training to Improve Sprint Performance: A Systematic Review.
    Petrakos G; Morin JB; Egan B
    Sports Med; 2016 Mar; 46(3):381-400. PubMed ID: 26553497
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Relationship between the kinetics and kinematics of a unilateral horizontal drop jump to sprint performance.
    Holm DJ; Stålbom M; Keogh JW; Cronin J
    J Strength Cond Res; 2008 Sep; 22(5):1589-96. PubMed ID: 18714227
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The match-play sprint performance of elite senior hurlers during competitive games.
    Young D; Coratella G; Malone S; Collins K; Mourot L; Beato M
    PLoS One; 2019; 14(4):e0215156. PubMed ID: 31017921
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effects of sprint and plyometrics training on field sport acceleration technique.
    Lockie RG; Murphy AJ; Callaghan SJ; Jeffriess MD
    J Strength Cond Res; 2014 Jul; 28(7):1790-801. PubMed ID: 24149762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.