These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34165136)

  • 21. A Free-Radical Pathway to Hydrogenated Phenanthrene in Molecular Clouds-Low Temperature Growth of Polycyclic Aromatic Hydrocarbons.
    Thomas AM; Lucas M; Yang T; Kaiser RI; Fuentes L; Belisario-Lara D; Mebel AM
    Chemphyschem; 2017 Aug; 18(15):1971-1976. PubMed ID: 28556602
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent applications of synchrotron VUV photoionization mass spectrometry: insight into combustion chemistry.
    Li Y; Qi F
    Acc Chem Res; 2010 Jan; 43(1):68-78. PubMed ID: 19705821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the formation of cyclopentadiene in the C3H5˙ + C2H2 reaction.
    Bouwman J; Bodi A; Oomens J; Hemberger P
    Phys Chem Chem Phys; 2015 Aug; 17(32):20508-14. PubMed ID: 26086435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. VUV Photoionization Study of the Formation of the Simplest Polycyclic Aromatic Hydrocarbon: Naphthalene (C
    Zhao L; Kaiser RI; Xu B; Ablikim U; Ahmed M; Zagidullin MV; Azyazov VN; Howlader AH; Wnuk SF; Mebel AM
    J Phys Chem Lett; 2018 May; 9(10):2620-2626. PubMed ID: 29717871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combustion in the future: The importance of chemistry.
    Kohse-Höinghaus K
    Proc Combust Inst; 2020 Sep; ():. PubMed ID: 33013234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Products of the Propargyl Self-Reaction at High Temperatures Investigated by IR/UV Ion Dip Spectroscopy.
    Constantinidis P; Hirsch F; Fischer I; Dey A; Rijs AM
    J Phys Chem A; 2017 Jan; 121(1):181-191. PubMed ID: 27997191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective Formation of Indene through the Reaction of Benzyl Radicals with Acetylene.
    Parker DS; Kaiser RI; Kostko O; Ahmed M
    Chemphyschem; 2015 Jul; 16(10):2091-3. PubMed ID: 25917234
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reactivity of the Indenyl Radical (C
    Zhao L; Prendergast MB; Kaiser RI; Xu B; Lu W; Ablikim U; Ahmed M; Oleinikov AD; Azyazov VN; Mebel AM; Howlader AH; Wnuk SF
    Chemphyschem; 2019 Jun; 20(11):1437-1447. PubMed ID: 30938059
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation of the acenaphthylene cation as a common C
    Banhatti S; Rap DB; Simon A; Leboucher H; Wenzel G; Joblin C; Redlich B; Schlemmer S; Brünken S
    Phys Chem Chem Phys; 2022 Nov; 24(44):27343-27354. PubMed ID: 36326610
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel products from C6H5 + C6H6/C6H5 reactions.
    Shukla B; Tsuchiya K; Koshi M
    J Phys Chem A; 2011 Jun; 115(21):5284-93. PubMed ID: 21545158
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PAH Growth in Flames and Space: Formation of the Phenalenyl Radical.
    Levey ZD; Laws BA; Sundar SP; Nauta K; Kable SH; da Silva G; Stanton JF; Schmidt TW
    J Phys Chem A; 2022 Jan; 126(1):101-108. PubMed ID: 34936357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reaction dynamics in astrochemistry: low-temperature pathways to polycyclic aromatic hydrocarbons in the interstellar medium.
    Kaiser RI; Parker DS; Mebel AM
    Annu Rev Phys Chem; 2015 Apr; 66():43-67. PubMed ID: 25422849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of hydrogen abstraction acetylene addition mechanisms in the formation of chlorinated naphthalenes. 2. Kinetic modeling and the detailed mechanism of ring closure.
    McIntosh GJ; Russell DK
    J Phys Chem A; 2014 Dec; 118(51):12205-20. PubMed ID: 25420011
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reaction dynamics of phenyl radicals in extreme environments: a crossed molecular beam study.
    Gu X; Kaiser RI
    Acc Chem Res; 2009 Feb; 42(2):290-302. PubMed ID: 19053235
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation Mechanisms of Naphthalene and Indene: From the Interstellar Medium to Combustion Flames.
    Mebel AM; Landera A; Kaiser RI
    J Phys Chem A; 2017 Feb; 121(5):901-926. PubMed ID: 28072538
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Continuous Butadiyne Addition to Propargyl: A Radical-Efficient Pathway for Polycyclic Aromatic Hydrocarbons.
    Jin H; Xing L; Yang J; Zhou Z; Qi F; Farooq A
    J Phys Chem Lett; 2021 Aug; 12(33):8109-8114. PubMed ID: 34410145
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation pathways of polycyclic aromatic hydrocarbons (PAHs) in butane or butadiene flames.
    Zhang T; Mu G; Zhang S; Hou J
    RSC Adv; 2021 Jan; 11(10):5629-5642. PubMed ID: 35423086
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ab initio G3-type/statistical theory study of the formation of indene in combustion flames. I. Pathways involving benzene and phenyl radical.
    Kislov VV; Mebel AM
    J Phys Chem A; 2007 May; 111(19):3922-31. PubMed ID: 17260977
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toward the Oxidation of the Phenyl Radical and Prevention of PAH Formation in Combustion Systems.
    Parker DS; Kaiser RI; Troy TP; Kostko O; Ahmed M; Mebel AM
    J Phys Chem A; 2015 Jul; 119(28):7145-54. PubMed ID: 25354358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A unified reaction network on the formation of five-membered ringed polycyclic aromatic hydrocarbons (PAHs) and their role in ring expansion processes through radical-radical reactions.
    Li W; Zhao L; Kaiser RI
    Phys Chem Chem Phys; 2023 Feb; 25(5):4141-4150. PubMed ID: 36655590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.