BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34165167)

  • 1. Nuclear IGF1R interacts with NuMA and regulates 53BP1‑dependent DNA double‑strand break repair in colorectal cancer.
    Yang C; Zhang Y; Segar N; Huang C; Zeng P; Tan X; Mao L; Chen Z; Haglund F; Larsson O; Chen Z; Lin Y
    Oncol Rep; 2021 Aug; 46(2):. PubMed ID: 34165167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nuclear structural protein NuMA is a negative regulator of 53BP1 in DNA double-strand break repair.
    Salvador Moreno N; Liu J; Haas KM; Parker LL; Chakraborty C; Kron SJ; Hodges K; Miller LD; Langefeld C; Robinson PJ; Lelièvre SA; Vidi PA
    Nucleic Acids Res; 2019 Apr; 47(6):2703-2715. PubMed ID: 30812030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear GSK3β induces DNA double-strand break repair by phosphorylating 53BP1 in glioblastoma.
    Yang Y; Lei T; Du S; Tong R; Wang H; Yang J; Huang J; Sun M; Wang Y; Dong Z
    Int J Oncol; 2018 Mar; 52(3):709-720. PubMed ID: 29328365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of DNA double-strand break repair pathway choice: a new focus on 53BP1.
    Zhang F; Gong Z
    J Zhejiang Univ Sci B; 2021 Jan; 22(1):38-46. PubMed ID: 33448186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous nuclear ribonucleoprotein L facilitates recruitment of 53BP1 and BRCA1 at the DNA break sites induced by oxaliplatin in colorectal cancer.
    Hu W; Lei L; Xie X; Huang L; Cui Q; Dang T; Liu GL; Li Y; Sun X; Zhou Z
    Cell Death Dis; 2019 Jul; 10(8):550. PubMed ID: 31320608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smad7 foci are present in micronuclei induced by heavy particle radiation.
    Wang M; Saha J; Cucinotta FA
    Mutat Res; 2013 Aug; 756(1-2):108-14. PubMed ID: 23643526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATM-ESCO2-SMC3 axis promotes 53BP1 recruitment in response to DNA damage and safeguards genome integrity by stabilizing cohesin complex.
    Fu J; Zhou S; Xu H; Liao L; Shen H; Du P; Zheng X
    Nucleic Acids Res; 2023 Aug; 51(14):7376-7391. PubMed ID: 37377435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal dynamics of 53BP1 dimer recruitment to a DNA double strand break.
    Lou J; Priest DG; Solano A; Kerjouan A; Hinde E
    Nat Commun; 2020 Nov; 11(1):5776. PubMed ID: 33188174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair.
    Noon AT; Shibata A; Rief N; Löbrich M; Stewart GS; Jeggo PA; Goodarzi AA
    Nat Cell Biol; 2010 Feb; 12(2):177-84. PubMed ID: 20081839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 53BP1 regulates heterochromatin through liquid phase separation.
    Zhang L; Geng X; Wang F; Tang J; Ichida Y; Sharma A; Jin S; Chen M; Tang M; Pozo FM; Wang W; Wang J; Wozniak M; Guo X; Miyagi M; Jin F; Xu Y; Yao X; Zhang Y
    Nat Commun; 2022 Jan; 13(1):360. PubMed ID: 35042897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human papillomavirus type 16 E6 and E7 oncoproteins interact with the nuclear p53-binding protein 1 in an in vitro reconstructed 3D epithelium: new insights for the virus-induced DNA damage response.
    Squarzanti DF; Sorrentino R; Landini MM; Chiesa A; Pinato S; Rocchio F; Mattii M; Penengo L; Azzimonti B
    Virol J; 2018 Nov; 15(1):176. PubMed ID: 30445982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PML nuclear body disruption impairs DNA double-strand break sensing and repair in APL.
    di Masi A; Cilli D; Berardinelli F; Talarico A; Pallavicini I; Pennisi R; Leone S; Antoccia A; Noguera NI; Lo-Coco F; Ascenzi P; Minucci S; Nervi C
    Cell Death Dis; 2016 Jul; 7(7):e2308. PubMed ID: 27468685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles for the DNA-PK complex and 53BP1 in protecting ends from resection during DNA double-strand break repair.
    Shibata A; Jeggo PA
    J Radiat Res; 2020 Sep; 61(5):718-726. PubMed ID: 32779701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discordance between phosphorylation and recruitment of 53BP1 in response to DNA double-strand breaks.
    Harding SM; Bristow RG
    Cell Cycle; 2012 Apr; 11(7):1432-44. PubMed ID: 22421153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear Foci Assays in Live Cells.
    Mori E; Asaithamby A
    Methods Mol Biol; 2019; 1984():75-85. PubMed ID: 31267422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-dose ionizing irradiation triggers a 53BP1 response to DNA double strand breaks in mouse spermatogonial stem cells.
    Le W; Qi L; Li J; Wu D; Xu J; Zhang J
    Syst Biol Reprod Med; 2016; 62(2):106-13. PubMed ID: 26857623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA repair kinetics in SCID mice Sertoli cells and DNA-PKcs-deficient mouse embryonic fibroblasts.
    Ahmed EA; Vélaz E; Rosemann M; Gilbertz KP; Scherthan H
    Chromosoma; 2017 Mar; 126(2):287-298. PubMed ID: 27136939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of ionizing radiation-induced DNA damage and repair in three-dimensional human skin model system.
    Su Y; Meador JA; Geard CR; Balajee AS
    Exp Dermatol; 2010 Aug; 19(8):e16-22. PubMed ID: 19650866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compromised repair of radiation-induced DNA double-strand breaks in Fanconi anemia fibroblasts in G2.
    Zahnreich S; Weber B; Rösch G; Schindler D; Schmidberger H
    DNA Repair (Amst); 2020 Dec; 96():102992. PubMed ID: 33069004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SCAI promotes DNA double-strand break repair in distinct chromosomal contexts.
    Hansen RK; Mund A; Poulsen SL; Sandoval M; Klement K; Tsouroula K; Tollenaere MA; Räschle M; Soria R; Offermanns S; Worzfeld T; Grosse R; Brandt DT; Rozell B; Mann M; Cole F; Soutoglou E; Goodarzi AA; Daniel JA; Mailand N; Bekker-Jensen S
    Nat Cell Biol; 2016 Dec; 18(12):1357-1366. PubMed ID: 27820601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.