These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 34165174)
1. Endothelin-1 induces changes in the expression levels of steroidogenic enzymes and increases androgen receptor and testosterone production in the PC3 prostate cancer cell line. Torres MJ; López-Moncada F; Herrera D; Indo S; Lefian A; Llanos P; Tapia J; Castellón EA; Contreras HR Oncol Rep; 2021 Aug; 46(2):. PubMed ID: 34165174 [TBL] [Abstract][Full Text] [Related]
2. Silencing of the transcriptional factor ZEB1 alters the steroidogenic pathway, and increases the concentration of testosterone and DHT in DU145 cells. Herrera D; Orellana-Serradell O; Villar P; Torres MJ; Paciucci R; Castellón EA; Contreras HR Oncol Rep; 2019 Feb; 41(2):1275-1283. PubMed ID: 30483800 [TBL] [Abstract][Full Text] [Related]
3. Distinct patterns of dysregulated expression of enzymes involved in androgen synthesis and metabolism in metastatic prostate cancer tumors. Mitsiades N; Sung CC; Schultz N; Danila DC; He B; Eedunuri VK; Fleisher M; Sander C; Sawyers CL; Scher HI Cancer Res; 2012 Dec; 72(23):6142-52. PubMed ID: 22971343 [TBL] [Abstract][Full Text] [Related]
4. Elevated AKR1C3 expression promotes prostate cancer cell survival and prostate cell-mediated endothelial cell tube formation: implications for prostate cancer progression. Dozmorov MG; Azzarello JT; Wren JD; Fung KM; Yang Q; Davis JS; Hurst RE; Culkin DJ; Penning TM; Lin HK BMC Cancer; 2010 Dec; 10():672. PubMed ID: 21134280 [TBL] [Abstract][Full Text] [Related]
5. Androgen-independent prostate cancer cells acquire the complete steroidogenic potential of synthesizing testosterone from cholesterol. Dillard PR; Lin MF; Khan SA Mol Cell Endocrinol; 2008 Nov; 295(1-2):115-20. PubMed ID: 18782595 [TBL] [Abstract][Full Text] [Related]
6. Testosterone accumulation in prostate cancer cells is enhanced by facilitated diffusion. Kaipainen A; Zhang A; Gil da Costa RM; Lucas J; Marck B; Matsumoto AM; Morrissey C; True LD; Mostaghel EA; Nelson PS Prostate; 2019 Sep; 79(13):1530-1542. PubMed ID: 31376206 [TBL] [Abstract][Full Text] [Related]
7. Steroidogenic enzymes and stem cell markers are upregulated during androgen deprivation in prostate cancer. Pfeiffer MJ; Smit FP; Sedelaar JP; Schalken JA Mol Med; 2011; 17(7-8):657-64. PubMed ID: 21365123 [TBL] [Abstract][Full Text] [Related]
8. Overexpression of aldo-keto reductase 1C3 (AKR1C3) in LNCaP cells diverts androgen metabolism towards testosterone resulting in resistance to the 5α-reductase inhibitor finasteride. Byrns MC; Mindnich R; Duan L; Penning TM J Steroid Biochem Mol Biol; 2012 May; 130(1-2):7-15. PubMed ID: 22265960 [TBL] [Abstract][Full Text] [Related]
9. The Impact of Ang-(1-9) and Ang-(3-7) on the Biological Properties of Prostate Cancer Cells by Modulation of Inflammatory and Steroidogenesis Pathway Genes. Domińska K; Kowalska K; Urbanek KA; Habrowska-Górczyńska DE; Ochędalski T; Piastowska Ciesielska AW Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32872192 [TBL] [Abstract][Full Text] [Related]
10. Steroidogenic enzyme AKR1C3 is a novel androgen receptor-selective coactivator that promotes prostate cancer growth. Yepuru M; Wu Z; Kulkarni A; Yin F; Barrett CM; Kim J; Steiner MS; Miller DD; Dalton JT; Narayanan R Clin Cancer Res; 2013 Oct; 19(20):5613-25. PubMed ID: 23995860 [TBL] [Abstract][Full Text] [Related]
11. Understanding the molecular mechanism of endothelin ET Wang L; Wang L; Yan F Biophys J; 2022 Jul; 121(13):2490-2502. PubMed ID: 35660104 [TBL] [Abstract][Full Text] [Related]
12. Vimentin 3 Expression in Prostate Cancer Cells. KÖditz B; Stog A; GÖbel H; Heidegger I; Fries J; Heidenreich A; VON Brandenstein M Anticancer Res; 2021 Jan; 41(1):169-174. PubMed ID: 33419810 [TBL] [Abstract][Full Text] [Related]
13. Prostate cancer stromal cells and LNCaP cells coordinately activate the androgen receptor through synthesis of testosterone and dihydrotestosterone from dehydroepiandrosterone. Mizokami A; Koh E; Izumi K; Narimoto K; Takeda M; Honma S; Dai J; Keller ET; Namiki M Endocr Relat Cancer; 2009 Dec; 16(4):1139-55. PubMed ID: 19608712 [TBL] [Abstract][Full Text] [Related]
14. Androgen receptor as a regulator of ZEB2 expression and its implications in epithelial-to-mesenchymal transition in prostate cancer. Jacob S; Nayak S; Fernandes G; Barai RS; Menon S; Chaudhari UK; Kholkute SD; Sachdeva G Endocr Relat Cancer; 2014 Jun; 21(3):473-86. PubMed ID: 24812058 [TBL] [Abstract][Full Text] [Related]
15. Evidence of limited contributions for intratumoral steroidogenesis in prostate cancer. Hofland J; van Weerden WM; Dits NF; Steenbergen J; van Leenders GJ; Jenster G; Schröder FH; de Jong FH Cancer Res; 2010 Feb; 70(3):1256-64. PubMed ID: 20086173 [TBL] [Abstract][Full Text] [Related]
16. Modulation of AKR1C2 by curcumin decreases testosterone production in prostate cancer. Ide H; Lu Y; Noguchi T; Muto S; Okada H; Kawato S; Horie S Cancer Sci; 2018 Apr; 109(4):1230-1238. PubMed ID: 29369461 [TBL] [Abstract][Full Text] [Related]
17. Strontium fructose 1,6-diphosphate rescues adenine-induced male hypogonadism and upregulates the testicular endothelin-1 system. Feng Y; Zhang Q; Dai DZ; Ying HJ; Dai Y Clin Exp Pharmacol Physiol; 2007 Nov; 34(11):1131-7. PubMed ID: 17880366 [TBL] [Abstract][Full Text] [Related]
18. Nuclear receptor ERRα contributes to castration-resistant growth of prostate cancer via its regulation of intratumoral androgen biosynthesis. Xu Z; Ma T; Zhou J; Gao W; Li Y; Yu S; Wang Y; Chan FL Theranostics; 2020; 10(9):4201-4216. PubMed ID: 32226548 [TBL] [Abstract][Full Text] [Related]
19. Impact of circulating cholesterol levels on growth and intratumoral androgen concentration of prostate tumors. Mostaghel EA; Solomon KR; Pelton K; Freeman MR; Montgomery RB PLoS One; 2012; 7(1):e30062. PubMed ID: 22279565 [TBL] [Abstract][Full Text] [Related]
20. Cancer-associated fibroblasts promote prostate tumor growth and progression through upregulation of cholesterol and steroid biosynthesis. Neuwirt H; Bouchal J; Kharaishvili G; Ploner C; Jöhrer K; Pitterl F; Weber A; Klocker H; Eder IE Cell Commun Signal; 2020 Jan; 18(1):11. PubMed ID: 31980029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]