These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34165282)

  • 1. In-Furnace Control of Arsenic Vapor Emissions Using Fe
    Song B; Yuan K; Wei Y; Chen D; Meng F; Cao Q; Song M; Liu H
    Environ Sci Technol; 2021 Jul; 55(13):8613-8621. PubMed ID: 34165282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the capture mechanism of gaseous As
    He Z; Wei Q; Liang C; Liu D; Ma J; Chen X; Song M
    Chemosphere; 2023 Sep; 336():139243. PubMed ID: 37330063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Middle-low-temperature oxidation and adsorption of arsenic from flue gas by Fe-Ce-based composite catalyst.
    Zhang K; Hu L; Wang C; Zhang K
    Chemosphere; 2022 Feb; 288(Pt 1):132425. PubMed ID: 34606904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep insight into the effect of NaCl/HCl/SO
    Yu S; Zhang C; Ma L; Tan P; Fang Q; Chen G
    J Hazard Mater; 2021 Feb; 403():123617. PubMed ID: 32763637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-Furnace Control of Arsenic Vapor Emissions Using Kaolinite during Low-Rank Coal Combustion: Influence of Gaseous Sodium Compounds.
    Xing H; Liu H; Zhang X; Huang Y; Li H; Huang B; Hu H; Yao H
    Environ Sci Technol; 2019 Oct; 53(20):12113-12120. PubMed ID: 31536334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption and reaction mechanism of arsenic vapors over γ-Al
    Hu H; Chen D; Liu H; Yang Y; Cai H; Shen J; Yao H
    Chemosphere; 2017 Aug; 180():186-191. PubMed ID: 28407548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Al modification on the adsorption of As
    Shen P; Wu S; Hu C; Cheng Z; Wu J; Luo G; Yao H; Mao X; Song M; Yang X
    J Mol Graph Model; 2023 Jan; 118():108357. PubMed ID: 36242863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic effects of Fe-Mn binary oxide for gaseous arsenic removal in flue gas.
    He KQ; Yuan CG; Jiang YH; Duan XL; Li Y; Shi MD
    Ecotoxicol Environ Saf; 2021 Jan; 207():111491. PubMed ID: 33254387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gaseous Arsenic Capture in Flue Gas by CuCl
    Duan XL; Yuan CG; He KQ; Yu JX; Jiang YH; Guo Q; Li Y; Yu SJ; Liu JF
    Environ Sci Technol; 2022 Apr; 56(7):4507-4517. PubMed ID: 35192319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress of gaseous arsenic removal from flue gas by adsorption: Experimental and theoretical calculations.
    Yan X; Li Q; Huang X; Li B; Li S; Wang Q
    J Environ Sci (China); 2024 Feb; 136():470-485. PubMed ID: 37923457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Re-using of coal-fired fly ash for arsenic vapors in-situ retention before SCR catalyst: Experiments and mechanisms.
    Li S; Gong H; Hu H; Liu H; Huang Y; Fu B; Wang L; Yao H
    Chemosphere; 2020 Sep; 254():126700. PubMed ID: 32334244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous removal of SO2 and trace As2O3 from flue gas: mechanism, kinetics study, and effect of main gases on arsenic capture.
    Li Y; Tong H; Zhuo Y; Li Y; Xu X
    Environ Sci Technol; 2007 Apr; 41(8):2894-900. PubMed ID: 17533855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capture gaseous arsenic in flue gas by amorphous iron manganese oxides with high SO
    Yan X; Li Q; Huang X; Li K; Li B; Li S; Zhao Y; Wang Q; Liu H
    Environ Res; 2023 Nov; 236(Pt 1):116750. PubMed ID: 37500039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic function of ferric oxide and effect of water on the formation of sulfur trioxide.
    Dai G; Wang X; You H; Wang Y; Shan Z; Tan H
    J Environ Manage; 2020 Jun; 264():110499. PubMed ID: 32250917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The positive effect of siderite-derived α-Fe
    Shu D; Liu H; Chen T; Chen D; Zou X; Wang C; Li M; Wang H
    Environ Sci Pollut Res Int; 2020 Apr; 27(11):12376-12385. PubMed ID: 31993902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capture of gas-phase arsenic oxide by lime: kinetic and mechanistic studies.
    Jadhav RA; Fan LS
    Environ Sci Technol; 2001 Feb; 35(4):794-9. PubMed ID: 11349294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic oxidation of gas-phase elemental mercury by nano-Fe2O3.
    Kong F; Qiu J; Liu H; Zhao R; Ai Z
    J Environ Sci (China); 2011; 23(4):699-704. PubMed ID: 21793416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of operating parameters on arsenic transformation during municipal sewage sludge incineration with cotton stalk.
    Zhao Y; Ren Q; Na Y
    Chemosphere; 2018 Feb; 193():951-957. PubMed ID: 29874771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical and experimental investigations of mercury adsorption on hematite surfaces.
    Jung JE; Liguori S; Jew AD; Brown GE; Wilcox J
    J Air Waste Manag Assoc; 2018 Jan; 68(1):39-53. PubMed ID: 28829689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study on inhibition of NO(x) and dioxin emissions by carbohydrazide under moderate to high temperatures].
    Guan ZZ; Chen DZ; Hong X; Li XW; Yu YM; Wang YJ
    Huan Jing Ke Xue; 2011 Sep; 32(9):2810-6. PubMed ID: 22165256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.