These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 34165389)
1. Evaluating the effect of multi-sensory stimulations on simulator sickness and sense of presence during HMD-mediated VR experience. Grassini S; Laumann K; de Martin Topranin V; Thorp S Ergonomics; 2021 Dec; 64(12):1532-1542. PubMed ID: 34165389 [TBL] [Abstract][Full Text] [Related]
2. Influence of bone-conducted vibration on simulator sickness in virtual reality. Weech S; Moon J; Troje NF PLoS One; 2018; 13(3):e0194137. PubMed ID: 29590147 [TBL] [Abstract][Full Text] [Related]
3. Exploratory factor analysis and validity of the virtual reality symptom questionnaire and computer use survey. Del Cid DA; Larranaga D; Leitao M; Mosher RL; Berzenski SR; Gandhi V; Drew SA Ergonomics; 2021 Jan; 64(1):69-77. PubMed ID: 32921282 [TBL] [Abstract][Full Text] [Related]
4. Comparison of visual fatigue caused by head-mounted display for virtual reality and two-dimensional display using objective and subjective evaluation. Hirota M; Kanda H; Endo T; Miyoshi T; Miyagawa S; Hirohara Y; Yamaguchi T; Saika M; Morimoto T; Fujikado T Ergonomics; 2019 Jun; 62(6):759-766. PubMed ID: 30773103 [TBL] [Abstract][Full Text] [Related]
5. Effects of a Modern Virtual Reality 3D Head-Mounted Display Exergame on Simulator Sickness and Immersion Under Specific Conditions in Young Women and Men: Experimental Study. Ciążyńska J; Janowski M; Maciaszek J JMIR Serious Games; 2022 Nov; 10(4):e41234. PubMed ID: 36445744 [TBL] [Abstract][Full Text] [Related]
6. Effects of virtual reality technology locomotive multi-sensory motion stimuli on a user simulator sickness and controller intuitiveness during a navigation task. Aldaba CN; Moussavi Z Med Biol Eng Comput; 2020 Jan; 58(1):143-154. PubMed ID: 31758315 [TBL] [Abstract][Full Text] [Related]
7. Invisible Boundaries for VR: Auditory and Haptic Signals as Indicators for Real World Boundaries. George C; Tamunjoh P; Hussmann H IEEE Trans Vis Comput Graph; 2020 Dec; 26(12):3414-3422. PubMed ID: 32941151 [TBL] [Abstract][Full Text] [Related]
8. Factors Associated With Virtual Reality Sickness in Head-Mounted Displays: A Systematic Review and Meta-Analysis. Saredakis D; Szpak A; Birckhead B; Keage HAD; Rizzo A; Loetscher T Front Hum Neurosci; 2020; 14():96. PubMed ID: 32300295 [TBL] [Abstract][Full Text] [Related]
9. Head-Mounted Display with Increased Downward Field of View Improves Presence and Sense of Self-Location. Nakano K; Isoyama N; Monteiro D; Sakata N; Kiyokawa K; Narumi T IEEE Trans Vis Comput Graph; 2021 Nov; 27(11):4204-4214. PubMed ID: 34449388 [TBL] [Abstract][Full Text] [Related]
10. Exergaming With Beat Saber: An Investigation of Virtual Reality Aftereffects. Szpak A; Michalski SC; Loetscher T J Med Internet Res; 2020 Oct; 22(10):e19840. PubMed ID: 33095182 [TBL] [Abstract][Full Text] [Related]
11. Contextual sensory integration training via head mounted display for individuals with vestibular disorders: a feasibility study. Lubetzky AV; Kelly J; Wang Z; Gospodarek M; Fu G; Sutera J; Hujsak BD Disabil Rehabil Assist Technol; 2022 Jan; 17(1):74-84. PubMed ID: 32421374 [TBL] [Abstract][Full Text] [Related]
12. Omnidirectional Virtual Visual Acuity: A User-Centric Visual Clarity Metric for Virtual Reality Head-Mounted Displays and Environments. Wang J; Shi R; Li X; Wei Y; Liang HN IEEE Trans Vis Comput Graph; 2024 May; 30(5):2033-2043. PubMed ID: 38437113 [TBL] [Abstract][Full Text] [Related]
13. Understanding How Virtual Reality Can Support Mindfulness Practice: Mixed Methods Study. Seabrook E; Kelly R; Foley F; Theiler S; Thomas N; Wadley G; Nedeljkovic M J Med Internet Res; 2020 Mar; 22(3):e16106. PubMed ID: 32186519 [TBL] [Abstract][Full Text] [Related]
14. EarVR: Using Ear Haptics in Virtual Reality for Deaf and Hard-of-Hearing People. Mirzaei M; Kan P; Kaufmann H IEEE Trans Vis Comput Graph; 2020 May; 26(5):2084-2093. PubMed ID: 32070977 [TBL] [Abstract][Full Text] [Related]
16. Effects of synchronised engine sound and vibration presentation on visually induced motion sickness. Sawada Y; Itaguchi Y; Hayashi M; Aigo K; Miyagi T; Miki M; Kimura T; Miyazaki M Sci Rep; 2020 May; 10(1):7553. PubMed ID: 32398641 [TBL] [Abstract][Full Text] [Related]
17. Immersive virtual reality during gait rehabilitation increases walking speed and motivation: a usability evaluation with healthy participants and patients with multiple sclerosis and stroke. Winter C; Kern F; Gall D; Latoschik ME; Pauli P; Käthner I J Neuroeng Rehabil; 2021 Apr; 18(1):68. PubMed ID: 33888148 [TBL] [Abstract][Full Text] [Related]
18. Are Modern Head-Mounted Displays Sexist? A Systematic Review on Gender Differences in HMD-Mediated Virtual Reality. Grassini S; Laumann K Front Psychol; 2020; 11():1604. PubMed ID: 32903791 [TBL] [Abstract][Full Text] [Related]
19. EEG-based analysis of various sensory stimulation effects to reduce visually induced motion sickness in virtual reality. Yeo SS; Kwon JW; Park SY Sci Rep; 2022 Oct; 12(1):18043. PubMed ID: 36302810 [TBL] [Abstract][Full Text] [Related]
20. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment. Kim HK; Park J; Choi Y; Choe M Appl Ergon; 2018 May; 69():66-73. PubMed ID: 29477332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]