BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34165389)

  • 1. Evaluating the effect of multi-sensory stimulations on simulator sickness and sense of presence during HMD-mediated VR experience.
    Grassini S; Laumann K; de Martin Topranin V; Thorp S
    Ergonomics; 2021 Dec; 64(12):1532-1542. PubMed ID: 34165389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of bone-conducted vibration on simulator sickness in virtual reality.
    Weech S; Moon J; Troje NF
    PLoS One; 2018; 13(3):e0194137. PubMed ID: 29590147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploratory factor analysis and validity of the virtual reality symptom questionnaire and computer use survey.
    Del Cid DA; Larranaga D; Leitao M; Mosher RL; Berzenski SR; Gandhi V; Drew SA
    Ergonomics; 2021 Jan; 64(1):69-77. PubMed ID: 32921282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of visual fatigue caused by head-mounted display for virtual reality and two-dimensional display using objective and subjective evaluation.
    Hirota M; Kanda H; Endo T; Miyoshi T; Miyagawa S; Hirohara Y; Yamaguchi T; Saika M; Morimoto T; Fujikado T
    Ergonomics; 2019 Jun; 62(6):759-766. PubMed ID: 30773103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of a Modern Virtual Reality 3D Head-Mounted Display Exergame on Simulator Sickness and Immersion Under Specific Conditions in Young Women and Men: Experimental Study.
    Ciążyńska J; Janowski M; Maciaszek J
    JMIR Serious Games; 2022 Nov; 10(4):e41234. PubMed ID: 36445744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of virtual reality technology locomotive multi-sensory motion stimuli on a user simulator sickness and controller intuitiveness during a navigation task.
    Aldaba CN; Moussavi Z
    Med Biol Eng Comput; 2020 Jan; 58(1):143-154. PubMed ID: 31758315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Invisible Boundaries for VR: Auditory and Haptic Signals as Indicators for Real World Boundaries.
    George C; Tamunjoh P; Hussmann H
    IEEE Trans Vis Comput Graph; 2020 Dec; 26(12):3414-3422. PubMed ID: 32941151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors Associated With Virtual Reality Sickness in Head-Mounted Displays: A Systematic Review and Meta-Analysis.
    Saredakis D; Szpak A; Birckhead B; Keage HAD; Rizzo A; Loetscher T
    Front Hum Neurosci; 2020; 14():96. PubMed ID: 32300295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Head-Mounted Display with Increased Downward Field of View Improves Presence and Sense of Self-Location.
    Nakano K; Isoyama N; Monteiro D; Sakata N; Kiyokawa K; Narumi T
    IEEE Trans Vis Comput Graph; 2021 Nov; 27(11):4204-4214. PubMed ID: 34449388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exergaming With Beat Saber: An Investigation of Virtual Reality Aftereffects.
    Szpak A; Michalski SC; Loetscher T
    J Med Internet Res; 2020 Oct; 22(10):e19840. PubMed ID: 33095182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contextual sensory integration training via head mounted display for individuals with vestibular disorders: a feasibility study.
    Lubetzky AV; Kelly J; Wang Z; Gospodarek M; Fu G; Sutera J; Hujsak BD
    Disabil Rehabil Assist Technol; 2022 Jan; 17(1):74-84. PubMed ID: 32421374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Omnidirectional Virtual Visual Acuity: A User-Centric Visual Clarity Metric for Virtual Reality Head-Mounted Displays and Environments.
    Wang J; Shi R; Li X; Wei Y; Liang HN
    IEEE Trans Vis Comput Graph; 2024 May; 30(5):2033-2043. PubMed ID: 38437113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding How Virtual Reality Can Support Mindfulness Practice: Mixed Methods Study.
    Seabrook E; Kelly R; Foley F; Theiler S; Thomas N; Wadley G; Nedeljkovic M
    J Med Internet Res; 2020 Mar; 22(3):e16106. PubMed ID: 32186519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EarVR: Using Ear Haptics in Virtual Reality for Deaf and Hard-of-Hearing People.
    Mirzaei M; Kan P; Kaufmann H
    IEEE Trans Vis Comput Graph; 2020 May; 26(5):2084-2093. PubMed ID: 32070977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual Vestibular Conflict Mitigation in Virtual Reality Using Galvanic Vestibular Stimulation.
    Pradhan GN; Galvan-Garza RC; Perez AM; Stepanek J; Cevette MJ
    Aerosp Med Hum Perform; 2022 May; 93(5):406-414. PubMed ID: 35551727
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of synchronised engine sound and vibration presentation on visually induced motion sickness.
    Sawada Y; Itaguchi Y; Hayashi M; Aigo K; Miyagi T; Miki M; Kimura T; Miyazaki M
    Sci Rep; 2020 May; 10(1):7553. PubMed ID: 32398641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immersive virtual reality during gait rehabilitation increases walking speed and motivation: a usability evaluation with healthy participants and patients with multiple sclerosis and stroke.
    Winter C; Kern F; Gall D; Latoschik ME; Pauli P; Käthner I
    J Neuroeng Rehabil; 2021 Apr; 18(1):68. PubMed ID: 33888148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are Modern Head-Mounted Displays Sexist? A Systematic Review on Gender Differences in HMD-Mediated Virtual Reality.
    Grassini S; Laumann K
    Front Psychol; 2020; 11():1604. PubMed ID: 32903791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EEG-based analysis of various sensory stimulation effects to reduce visually induced motion sickness in virtual reality.
    Yeo SS; Kwon JW; Park SY
    Sci Rep; 2022 Oct; 12(1):18043. PubMed ID: 36302810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment.
    Kim HK; Park J; Choi Y; Choe M
    Appl Ergon; 2018 May; 69():66-73. PubMed ID: 29477332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.