These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 34165564)

  • 1. Architecture and evolution of subtelomeres in the unicellular green alga Chlamydomonas reinhardtii.
    Chaux-Jukic F; O'Donnell S; Craig RJ; Eberhard S; Vallon O; Xu Z
    Nucleic Acids Res; 2021 Jul; 49(13):7571-7587. PubMed ID: 34165564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Telomerase-independent survival leads to a mosaic of complex subtelomere rearrangements in
    Chaux F; Agier N; Garrido C; Fischer G; Eberhard S; Xu Z
    Genome Res; 2023 Sep; 33(9):1582-1598. PubMed ID: 37580131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative genomics of Chlamydomonas.
    Craig RJ; Hasan AR; Ness RW; Keightley PD
    Plant Cell; 2021 May; 33(4):1016-1041. PubMed ID: 33793842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of
    Eberhard S; Valuchova S; Ravat J; Fulneček J; Jolivet P; Bujaldon S; Lemaire SD; Wollman FA; Teixeira MT; Riha K; Xu Z
    Life Sci Alliance; 2019 Jun; 2(3):. PubMed ID: 31160377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large arrays of tandemly repeated DNA sequences in the green alga Chlamydomonas reinhardtii.
    Hails T; Jobling M; Day A
    Chromosoma; 1993 Jul; 102(7):500-7. PubMed ID: 8397077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rates and Patterns of Mutation in Tandem Repetitive DNA in Six Independent Lineages of Chlamydomonas reinhardtii.
    Flynn JM; Lower SE; Barbash DA; Clark AG
    Genome Biol Evol; 2018 Jul; 10(7):1673-1686. PubMed ID: 29931069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of telomere-subtelomere junctions in Silene latifolia.
    Sýkorová E; Cartagena J; Horáková M; Fukui K; Fajkus J
    Mol Genet Genomics; 2003 Apr; 269(1):13-20. PubMed ID: 12715149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NPGREAT: assembly of human subtelomere regions with the use of ultralong nanopore reads and linked-reads.
    Adam E; Ranjan D; Riethman H
    BMC Bioinformatics; 2022 Dec; 23(1):545. PubMed ID: 36526983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats.
    Maul JE; Lilly JW; Cui L; dePamphilis CW; Miller W; Harris EH; Stern DB
    Plant Cell; 2002 Nov; 14(11):2659-79. PubMed ID: 12417694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide maps of highly-similar intrachromosomal repeats that mediate ectopic recombination in three human genome assemblies.
    Fernandez-Luna L; Aguilar-Perez C; Grochowski CM; Mehaffey M; Carvalho CMB; Gonzaga-Jauregui C
    bioRxiv; 2024 Jan; ():. PubMed ID: 38352399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extensive gene rearrangements in the chloroplast DNAs of Chlamydomonas species featuring multiple dispersed repeats.
    Boudreau E; Turmel M
    Mol Biol Evol; 1996 Jan; 13(1):233-43. PubMed ID: 8583896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome analysis of the unicellular green alga Chlamydomonas reinhardtii Indicates an ancient evolutionary origin for key pattern recognition and cell-signaling protein families.
    Wheeler GL; Miranda-Saavedra D; Barton GJ
    Genetics; 2008 May; 179(1):193-7. PubMed ID: 18493051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. To Repeat or Not to Repeat: Repetitive Sequences Regulate Genome Stability in
    Dunn MJ; Anderson MZ
    Genes (Basel); 2019 Oct; 10(11):. PubMed ID: 31671659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterns of tandem repetition in plant whole genome assemblies.
    Navajas-Pérez R; Paterson AH
    Mol Genet Genomics; 2009 Jun; 281(6):579-90. PubMed ID: 19242726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution patterns and impact of transposable elements in genes of green algae.
    Philippsen GS; Avaca-Crusca JS; Araujo APU; DeMarco R
    Gene; 2016 Dec; 594(1):151-159. PubMed ID: 27614292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction and selection of high-molecular-weight DNA for long-read sequencing from Chlamydomonas reinhardtii.
    Chaux F; Agier N; Eberhard S; Xu Z
    PLoS One; 2024; 19(2):e0297014. PubMed ID: 38330024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short repetitive sequences in green algal mitochondrial genomes: potential roles in mitochondrial genome evolution.
    Nedelcu AM; Lee RW
    Mol Biol Evol; 1998 Jun; 15(6):690-701. PubMed ID: 9615450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The light-harvesting complex of photosystem I in Chlamydomonas reinhardtii: protein composition, gene structures and phylogenic implications.
    Tokutsu R; Teramoto H; Takahashi Y; Ono TA; Minagawa J
    Plant Cell Physiol; 2004 Feb; 45(2):138-45. PubMed ID: 14988484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two copies of a DNA element, 'Wendy', in the chloroplast chromosome of Chlamydomonas reinhardtii between rearranged gene clusters.
    Fan WH; Woelfle MA; Mosig G
    Plant Mol Biol; 1995 Oct; 29(1):63-80. PubMed ID: 7579168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive Analysis of Human Subtelomeres by Whole Genome Mapping.
    Young E; Abid HZ; Kwok PY; Riethman H; Xiao M
    PLoS Genet; 2020 Jan; 16(1):e1008347. PubMed ID: 31986135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.