These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 34165797)

  • 1. Combining UAV-RGB high-throughput field phenotyping and genome-wide association study to reveal genetic variation of rice germplasms in dynamic response to drought stress.
    Jiang Z; Tu H; Bai B; Yang C; Zhao B; Guo Z; Liu Q; Zhao H; Yang W; Xiong L; Zhang J
    New Phytol; 2021 Oct; 232(1):440-455. PubMed ID: 34165797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-Wide Association Studies of Image Traits Reveal Genetic Architecture of Drought Resistance in Rice.
    Guo Z; Yang W; Chang Y; Ma X; Tu H; Xiong F; Jiang N; Feng H; Huang C; Yang P; Zhao H; Chen G; Liu H; Luo L; Hu H; Liu Q; Xiong L
    Mol Plant; 2018 Jun; 11(6):789-805. PubMed ID: 29614319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haplotype analysis from unmanned aerial vehicle imagery of rice MAGIC population for the trait dissection of biomass and plant architecture.
    Ogawa D; Sakamoto T; Tsunematsu H; Kanno N; Nonoue Y; Yonemaru JI
    J Exp Bot; 2021 Mar; 72(7):2371-2382. PubMed ID: 33367626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought.
    Ludovisi R; Tauro F; Salvati R; Khoury S; Mugnozza Scarascia G; Harfouche A
    Front Plant Sci; 2017; 8():1681. PubMed ID: 29021803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association mapping and genetic dissection of drought-induced canopy temperature differences in rice.
    Melandri G; Prashar A; McCouch SR; van der Linden G; Jones HG; Kadam N; Jagadish K; Bouwmeester H; Ruyter-Spira C
    J Exp Bot; 2020 Feb; 71(4):1614-1627. PubMed ID: 31846000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Throughput Phenotyping of Sorghum Plant Height Using an Unmanned Aerial Vehicle and Its Application to Genomic Prediction Modeling.
    Watanabe K; Guo W; Arai K; Takanashi H; Kajiya-Kanegae H; Kobayashi M; Yano K; Tokunaga T; Fujiwara T; Tsutsumi N; Iwata H
    Front Plant Sci; 2017; 8():421. PubMed ID: 28400784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaf Count Aided Novel Framework for Rice (
    Vishal MK; Saluja R; Aggrawal D; Banerjee B; Raju D; Kumar S; Chinnusamy V; Sahoo RN; Adinarayana J
    Plants (Basel); 2022 Oct; 11(19):. PubMed ID: 36235529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Aerial and Ground Based High Throughput Phenotyping for the Genetic Dissection of NDVI as a Proxy for Drought Adaptive Traits in Durum Wheat.
    Condorelli GE; Maccaferri M; Newcomb M; Andrade-Sanchez P; White JW; French AN; Sciara G; Ward R; Tuberosa R
    Front Plant Sci; 2018; 9():893. PubMed ID: 29997645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UAV-based time-series phenotyping reveals the genetic basis of plant height in upland cotton.
    Ye Y; Wang P; Zhang M; Abbas M; Zhang J; Liang C; Wang Y; Wei Y; Meng Z; Zhang R
    Plant J; 2023 Aug; 115(4):937-951. PubMed ID: 37154288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives.
    Yang G; Liu J; Zhao C; Li Z; Huang Y; Yu H; Xu B; Yang X; Zhu D; Zhang X; Zhang R; Feng H; Zhao X; Li Z; Li H; Yang H
    Front Plant Sci; 2017; 8():1111. PubMed ID: 28713402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remote estimation of leaf area index (LAI) with unmanned aerial vehicle (UAV) imaging for different rice cultivars throughout the entire growing season.
    Gong Y; Yang K; Lin Z; Fang S; Wu X; Zhu R; Peng Y
    Plant Methods; 2021 Aug; 17(1):88. PubMed ID: 34376195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput unmanned aerial vehicle-based phenotyping provides insights into the dynamic process and genetic basis of rapeseed waterlogging response in the field.
    Li J; Xie T; Chen Y; Zhang Y; Wang C; Jiang Z; Yang W; Zhou G; Guo L; Zhang J
    J Exp Bot; 2022 Sep; 73(15):5264-5278. PubMed ID: 35641129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of genetic diversity and marker-trait to improve drought tolerance in rice (Oryza sativa L.).
    Ghazy MI; Salem KFM; Sallam A
    Mol Biol Rep; 2021 Jan; 48(1):157-170. PubMed ID: 33300089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic mapping of morpho-physiological traits involved during reproductive stage drought tolerance in rice.
    Barik SR; Pandit E; Pradhan SK; Mohanty SP; Mohapatra T
    PLoS One; 2019; 14(12):e0214979. PubMed ID: 31846460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput phenotyping platform for analyzing drought tolerance in rice.
    Kim SL; Kim N; Lee H; Lee E; Cheon KS; Kim M; Baek J; Choi I; Ji H; Yoon IS; Jung KH; Kwon TR; Kim KH
    Planta; 2020 Aug; 252(3):38. PubMed ID: 32779032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of UAV Multisensor Data and Ensemble Approach for High-Throughput Estimation of Maize Phenotyping Traits.
    Shu M; Fei S; Zhang B; Yang X; Guo Y; Li B; Ma Y
    Plant Phenomics; 2022; 2022():9802585. PubMed ID: 36158531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf morphology, rather than plant water status, underlies genetic variation of rice leaf rolling under drought.
    Cal AJ; Sanciangco M; Rebolledo MC; Luquet D; Torres RO; McNally KL; Henry A
    Plant Cell Environ; 2019 May; 42(5):1532-1544. PubMed ID: 30620079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Digital Features Discriminate Between Drought Resistant and Drought Sensitive Rice Under Controlled and Field Conditions.
    Duan L; Han J; Guo Z; Tu H; Yang P; Zhang D; Fan Y; Chen G; Xiong L; Dai M; Williams K; Corke F; Doonan JH; Yang W
    Front Plant Sci; 2018; 9():492. PubMed ID: 29719548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Throughput Switchgrass Phenotyping and Biomass Modeling by UAV.
    Li F; Piasecki C; Millwood RJ; Wolfe B; Mazarei M; Stewart CN
    Front Plant Sci; 2020; 11():574073. PubMed ID: 33193511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of High Nitrogen Use Efficiency Phenotype in Rice (
    Liang T; Duan B; Luo X; Ma Y; Yuan Z; Zhu R; Peng Y; Gong Y; Fang S; Wu X
    Front Plant Sci; 2021; 12():740414. PubMed ID: 34925396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.