These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34165893)

  • 1. Enabling Cysteine-Free Native Chemical Ligation at Challenging Junctions with a Ligation Auxiliary Capable of Base Catalysis.
    Fuchs O; Trunschke S; Hanebrink H; Reimann M; Seitz O
    Angew Chem Int Ed Engl; 2021 Aug; 60(35):19483-19490. PubMed ID: 34165893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing Auxiliary-Mediated Native Chemical Ligation at Challenging Junctions with Pyridine Scaffolds.
    Trunschke S; Piemontese E; Fuchs O; Abboud S; Seitz O
    Chemistry; 2022 Dec; 28(68):e202202065. PubMed ID: 36097325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Type of Auxiliary for Native Chemical Peptide Ligation beyond Cysteine and Glycine Junctions.
    Loibl SF; Harpaz Z; Seitz O
    Angew Chem Int Ed Engl; 2015 Dec; 54(50):15055-9. PubMed ID: 26545341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Native chemical ligation at a base-labile 4-mercaptobutyrate N(α)-auxiliary.
    Harpaz Z; Loibl S; Seitz O
    Bioorg Med Chem Lett; 2016 Mar; 26(5):1434-7. PubMed ID: 26838809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide Thioester Formation via an Intramolecular N to S Acyl Shift for Peptide Ligation.
    Kawakami T
    Top Curr Chem; 2015; 362():107-35. PubMed ID: 25370522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Features of Auxiliaries That Enable Native Chemical Ligation beyond Glycine and Cleavage via Radical Fragmentation.
    Loibl SF; Dallmann A; Hennig K; Juds C; Seitz O
    Chemistry; 2018 Mar; 24(14):3623-3633. PubMed ID: 29334413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-Terminal Proline Editing for the Synthesis of Peptides with Mercaptoproline and Selenoproline: Mechanistic Insights Lead to Greater Efficiency in Proline Native Chemical Ligation.
    Ludwig BA; Forbes CR; Zondlo NJ
    ACS Chem Biol; 2024 Feb; 19(2):536-550. PubMed ID: 38324914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Native chemical ligation with Nalpha acyl transfer auxiliaries.
    Offer J
    Biopolymers; 2010; 94(4):530-41. PubMed ID: 20593473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traceless chemical ligation from S-, O-, and N-acyl isopeptides.
    Panda SS; Hall CD; Oliferenko AA; Katritzky AR
    Acc Chem Res; 2014 Apr; 47(4):1076-87. PubMed ID: 24617996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical analysis of the detailed mechanism of native chemical ligation reactions.
    Wang C; Guo QX; Fu Y
    Chem Asian J; 2011 May; 6(5):1241-51. PubMed ID: 21365769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Total chemical synthesis of proteins without HPLC purification.
    Loibl SF; Harpaz Z; Zitterbart R; Seitz O
    Chem Sci; 2016 Nov; 7(11):6753-6759. PubMed ID: 28451120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Powerful Auxiliary-Mediated Ligation To Facilitate Rapid Protein Assembly.
    Yin H; Lu D; Wang S; Wang P
    Org Lett; 2019 Jul; 21(13):5138-5142. PubMed ID: 31247759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extending synthetic access to proteins with a removable acyl transfer auxiliary.
    Offer J; Boddy CN; Dawson PE
    J Am Chem Soc; 2002 May; 124(17):4642-6. PubMed ID: 11971712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards biomolecular assembly employing extended native chemical ligation in combination with thioester synthesis using an N-->S acyl shift.
    Ackrill T; Anderson DW; Macmillan D
    Biopolymers; 2010; 94(4):495-503. PubMed ID: 20593460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An activated O --> N acyl transfer auxiliary: efficient amide-backbone substitution of hindered "difficult" peptides.
    Miranda LP; Meutermans WD; Smythe ML; Alewood PF
    J Org Chem; 2000 Sep; 65(18):5460-8. PubMed ID: 10970282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Total synthesis of cytochrome b562 by native chemical ligation using a removable auxiliary.
    Low DW; Hill MG; Carrasco MR; Kent SB; Botti P
    Proc Natl Acad Sci U S A; 2001 Jun; 98(12):6554-9. PubMed ID: 11390992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations.
    Agouridas V; El Mahdi O; Diemer V; Cargoët M; Monbaliu JM; Melnyk O
    Chem Rev; 2019 Jun; 119(12):7328-7443. PubMed ID: 31050890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing native chemical ligation for challenging chemical protein syntheses.
    Giesler RJ; Erickson PW; Kay MS
    Curr Opin Chem Biol; 2020 Oct; 58():37-44. PubMed ID: 32745915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and use of a pseudo-cysteine for native chemical ligation.
    Alves DA; Esser D; Broadbridge RJ; Beevers AP; Chapman CP; Winsor CE; Betley JR
    J Pept Sci; 2003 Apr; 9(4):221-8. PubMed ID: 12725243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox-Controlled Chemical Protein Synthesis: Sundry Shades of Latency.
    Agouridas V; Ollivier N; Vicogne J; Diemer V; Melnyk O
    Acc Chem Res; 2022 Sep; 55(18):2685-2697. PubMed ID: 36083810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.