BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34165920)

  • 1. A Stable High-Capacity Lithium-Ion Battery Using a Biomass-Derived Sulfur-Carbon Cathode and Lithiated Silicon Anode.
    Marangon V; Hernández-Rentero C; Olivares-Marín M; Gómez-Serrano V; Caballero Á; Morales J; Hassoun J
    ChemSusChem; 2021 Aug; 14(16):3333-3343. PubMed ID: 34165920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative lithium-ion battery using biomass-derived carbons as environmentally sustainable anode.
    Hernández-Rentero C; Marangon V; Olivares-Marín M; Gómez-Serrano V; Caballero Á; Morales J; Hassoun J
    J Colloid Interface Sci; 2020 Aug; 573():396-408. PubMed ID: 32304949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Lithium-Ion Battery using a 3 D-Array Nanostructured Graphene-Sulfur Cathode and a Silicon Oxide-Based Anode.
    Benítez A; Di Lecce D; Elia GA; Caballero Á; Morales J; Hassoun J
    ChemSusChem; 2018 May; 11(9):1512-1520. PubMed ID: 29493106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Cyclable Lithium-Sulfur Batteries with a Dual-Type Sulfur Cathode and a Lithiated Si/SiOx Nanosphere Anode.
    Lee SK; Oh SM; Park E; Scrosati B; Hassoun J; Park MS; Kim YJ; Kim H; Belharouak I; Sun YK
    Nano Lett; 2015 May; 15(5):2863-8. PubMed ID: 25844807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A stable lithiated silicon-chalcogen battery via synergetic chemical coupling between silicon and selenium.
    Eom K; Lee JT; Oschatz M; Wu F; Kaskel S; Yushin G; Fuller TF
    Nat Commun; 2017 Jan; 8():13888. PubMed ID: 28054543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ternary Sulfur/Polyacrylonitrile/SiO₂ Composite Cathodes for High-Performance Sulfur/Lithium Ion Full Batteries.
    He Y; Shan Z; Tan T; Chen Z; Zhang Y
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational Design of a High-Loading Polysulfide Cathode and a Thin-Lithium Anode for Developing Lean-Electrolyte Lithium-Sulfur Full Cells.
    Yu GT; Chung SH
    Small; 2023 Oct; 19(43):e2303490. PubMed ID: 37357173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-Life Lithium-Ion Sulfur Pouch Battery Enabled by Regulating Solvent Molecules and Using Lithiated Graphite Anode.
    Huang D; Wang Z; Han R; Hu S; Xue J; Wei Y; Song H; Liu Y; Xu J; Ge J; Wu X
    Adv Sci (Weinh); 2023 Oct; 10(30):e2302966. PubMed ID: 37712183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enabling High-Rate and Safe Lithium Ion-Sulfur Batteries by Effective Combination of Sulfur-Copolymer Cathode and Hard-Carbon Anode.
    Nguyen DT; Hoefling A; Yee M; Nguyen GTH; Theato P; Lee YJ; Song SW
    ChemSusChem; 2019 Jan; 12(2):480-486. PubMed ID: 30479038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Reversible Lithium-Metal Anode and Lithium-Sulfur Batteries Enabled by an Intrinsic Safe Electrolyte.
    Chen J; Yang H; Zhang X; Lei J; Zhang H; Yuan H; Yang J; Nuli Y; Wang J
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33419-33427. PubMed ID: 31423761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interphase Evolution of a Lithium-Ion/Oxygen Battery.
    Elia GA; Bresser D; Reiter J; Oberhumer P; Sun YK; Scrosati B; Passerini S; Hassoun J
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22638-43. PubMed ID: 26389522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomass-derived, activated carbon-sulfur composite cathode with a bifunctional interlayer of functionalized carbon nanotubes for lithium-sulfur cells.
    Manoj M; Muhamed Ashraf C; Jasna M; Anilkumar KM; Jinisha B; Pradeep VS; Jayalekshmi S
    J Colloid Interface Sci; 2019 Feb; 535():287-299. PubMed ID: 30316115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new high-capacity and safe energy storage system: lithium-ion sulfur batteries.
    Liang X; Yun J; Wang Y; Xiang H; Sun Y; Feng Y; Yu Y
    Nanoscale; 2019 Nov; 11(41):19140-19157. PubMed ID: 31595921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithiated Sulfur-Incorporated, Polymeric Cathode for Durable Lithium-Sulfur Batteries with Promoted Redox Kinetics.
    Dong F; Peng C; Xu H; Zheng Y; Yao H; Yang J; Zheng S
    ACS Nano; 2021 Dec; 15(12):20287-20299. PubMed ID: 34817165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Self-Formed Nanosheet MoS
    Chang U; Lee JT; Yun JM; Lee B; Lee SW; Joh HI; Eom K; Fuller TF
    ACS Nano; 2019 Feb; 13(2):1490-1498. PubMed ID: 30580512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Lithium Polysulfides on the Formation of Solid Electrolyte Interfaces in Silicon Anodes.
    Krüger H; Cavers H; Offermann J; Polonskyi O; Adelung R; Hansen S
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36786479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A lithium-ion sulfur battery based on a carbon-coated lithium-sulfide cathode and an electrodeposited silicon-based anode.
    Agostini M; Hassoun J; Liu J; Jeong M; Nara H; Momma T; Osaka T; Sun YK; Scrosati B
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):10924-8. PubMed ID: 24559093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous Carbon Paper as Interlayer to Stabilize the Lithium Anode for Lithium-Sulfur Battery.
    Kong LL; Zhang Z; Zhang YZ; Liu S; Li GR; Gao XP
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31684-31694. PubMed ID: 27805807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-Site Fluorination for Enhancing Utilization of Lithium in a Lithium-Sulfur Full Battery.
    Ren YX; Wei L; Jiang HR; Zhao C; Zhao TS
    ACS Appl Mater Interfaces; 2020 Dec; 12(48):53860-53868. PubMed ID: 33201662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.