These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 34165960)

  • 41. Alleviating Surface Degradation of Nickel-Rich Layered Oxide Cathode Material by Encapsulating with Nanoscale Li-Ions/Electrons Superionic Conductors Hybrid Membrane for Advanced Li-Ion Batteries.
    Li L; Xu M; Yao Q; Chen Z; Song L; Zhang Z; Gao C; Wang P; Yu Z; Lai Y
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):30879-30889. PubMed ID: 27805812
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Facile Synthesis of Polyphenothiazine as a High-Performance p-Type Cathode for Rechargeable Lithium Batteries.
    Wang X; Li G; Han Y; Wang F; Chu J; Cai T; Wang B; Song Z
    ChemSusChem; 2021 Aug; 14(15):3174-3181. PubMed ID: 34101379
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanoporous Ru as a carbon- and binder-free cathode for Li-O2 batteries.
    Liao K; Zhang T; Wang Y; Li F; Jian Z; Yu H; Zhou H
    ChemSusChem; 2015 Apr; 8(8):1429-34. PubMed ID: 25809196
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Na doping into Li-rich layered single crystal nanoparticles for high-performance lithium-ion batteries cathodes.
    Li J; Lin H; Tang C; Yu D; Sun J; Zhang W; Wang Y
    Nanotechnology; 2021 Nov; 33(6):. PubMed ID: 34724655
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries.
    Song Z; Qian Y; Zhang T; Otani M; Zhou H
    Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Layered Organic Cathode for High-Energy, Fast-Charging, and Long-Lasting Li-Ion Batteries.
    Chen T; Banda H; Wang J; Oppenheim JJ; Franceschi A; Dincǎ M
    ACS Cent Sci; 2024 Mar; 10(3):569-578. PubMed ID: 38559291
    [TBL] [Abstract][Full Text] [Related]  

  • 49. New nanostructured Li2S/silicon rechargeable battery with high specific energy.
    Yang Y; McDowell MT; Jackson A; Cha JJ; Hong SS; Cui Y
    Nano Lett; 2010 Apr; 10(4):1486-91. PubMed ID: 20184382
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure and Interface Design Enable Stable Li-Rich Cathode.
    Cui C; Fan X; Zhou X; Chen J; Wang Q; Ma L; Yang C; Hu E; Yang XQ; Wang C
    J Am Chem Soc; 2020 May; 142(19):8918-8927. PubMed ID: 32319764
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Binder-Free V
    Diem AM; Fenk B; Bill J; Burghard Z
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32019197
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrochemical analysis of the effect of Cr coating the LiV3O8 cathode in a lithium ion battery with a lithium powder anode.
    Lee JH; Lee JK; Yoon WY
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7058-64. PubMed ID: 23914998
    [TBL] [Abstract][Full Text] [Related]  

  • 53. First-Principles Study of Lithium Borocarbide as a Cathode Material for Rechargeable Li ion Batteries.
    Xu Q; Ban C; Dillon AC; Wei SH; Zhao Y
    J Phys Chem Lett; 2011 May; 2(10):1129-32. PubMed ID: 26295314
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Toward the High-Performance Lithium Primary Batteries by Chemically Modified Fluorinate Carbon with δ-MnO
    Li L; Wu R; Ma H; Cheng B; Rao S; Lin S; Xu C; Li L; Ding Y; Mai L
    Small; 2023 Jun; 19(26):e2300762. PubMed ID: 36950757
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced Electrochemical Performance of Disordered Rocksalt Cathodes Enabled by a Graphite Conductive Additive.
    Patil S; Koirala KP; Crafton MJ; Yang G; Tsai WY; McCloskey BD; Wang C; Nanda J; Self EC
    ACS Appl Mater Interfaces; 2023 Aug; 15(33):39253-39264. PubMed ID: 37565767
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Suppressing the Voltage Decay Based on a Distinct Stacking Sequence of Oxygen Atoms for Li-Rich Cathode Materials.
    Cao S; Wu C; Xie X; Li H; Zang Z; Li Z; Chen G; Guo X; Wang X
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17639-17648. PubMed ID: 33825459
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High Energy Density Rechargeable Batteries Based on Li Metal Anodes. The Role of Unique Surface Chemistry Developed in Solutions Containing Fluorinated Organic Co-solvents.
    Aurbach D; Markevich E; Salitra G
    J Am Chem Soc; 2021 Dec; 143(50):21161-21176. PubMed ID: 34807588
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrochemical Investigations of Sulfur-Decorated Organic Materials as Cathodes for Alkali Batteries.
    Fu Q; Zhao L; Luo X; Hobich J; Döpping D; Rehnlund D; Mutlu H; Dsoke S
    Small; 2024 Jun; 20(24):e2311800. PubMed ID: 38164806
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Extended Electrochemical Window of Solid Electrolytes via Heterogeneous Multilayered Structure for High-Voltage Lithium Metal Batteries.
    Duan H; Fan M; Chen WP; Li JY; Wang PF; Wang WP; Shi JL; Yin YX; Wan LJ; Guo YG
    Adv Mater; 2019 Mar; 31(12):e1807789. PubMed ID: 30702774
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhanced Low-Temperature Resistance of Lithium-Metal Rechargeable Batteries Based on Electrolyte Including Ethyl Acetate and LiDFOB Additives.
    Wang K; Gao S; Li L; Wang L; Yang X; Li X; Lü W
    Chemistry; 2024 Jul; 30(39):e202400803. PubMed ID: 38752562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.