These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34166417)

  • 1. Go with the flow: The extent of drag reduction as epiphytic bromeliads reorient in wind.
    Tay JYL; Zotz G; Puczylowski J; Einzmann HJR
    PLoS One; 2021; 16(6):e0252790. PubMed ID: 34166417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field measurements of wind speed and reconfiguration in Arundo donax (Poaceae) with estimates of drag forces.
    Speck O
    Am J Bot; 2003 Aug; 90(8):1253-6. PubMed ID: 21659225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leaves in the lowest and highest winds: temperature, force and shape.
    Vogel S
    New Phytol; 2009; 183(1):13-26. PubMed ID: 19413689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights into the role of the root system of epiphytic bromeliads: comparison of root and leaf trichome functions in acquisition of water and nutrients.
    Takahashi CA; Mercier H
    Ann Bot; 2024 Jul; ():. PubMed ID: 39021206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of gravity and wind on land plant evolution.
    Niklas KJ
    Rev Palaeobot Palynol; 1998 Jul; 102(1-2):1-14. PubMed ID: 11541943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unravelling intricate interactions among atmospheric bromeliads with highly overlapping niches in seasonal systems.
    Chaves CJN; Rossatto DR
    Plant Biol (Stuttg); 2020 Mar; 22(2):243-251. PubMed ID: 31736163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spider-fed bromeliads: seasonal and interspecific variation in plant performance.
    Gonçalves AZ; Mercier H; Mazzafera P; Romero GQ
    Ann Bot; 2011 May; 107(6):1047-55. PubMed ID: 21385776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Herbivores alter plant-wind interactions by acting as a point mass on leaves and by removing leaf tissue.
    Kothari AR; Burnett NP
    Ecol Evol; 2017 Sep; 7(17):6884-6893. PubMed ID: 28904768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Foliage motion under wind, from leaf flutter to branch buffeting.
    Tadrist L; Saudreau M; Hémon P; Amandolese X; Marquier A; Leclercq T; de Langre E
    J R Soc Interface; 2018 May; 15(142):. PubMed ID: 29743271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demographic effects of harvesting epiphytic bromeliads and an alternative approach to collection.
    Chaparro DM; Ticktin T
    Conserv Biol; 2011 Aug; 25(4):797-807. PubMed ID: 21658129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses of epidermal cell turgor pressure and photosynthetic activity of leaves of the atmospheric epiphyte Tillandsia usneoides (Bromeliaceae) after exposure to high humidity.
    Martin CE; Rux G; Herppich WB
    J Plant Physiol; 2013 Jan; 170(1):70-3. PubMed ID: 23000465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host trait combinations drive abundance and canopy distribution of atmospheric bromeliad assemblages.
    Chaves CJ; Dyonisio JC; Rossatto DR
    AoB Plants; 2016; 8():. PubMed ID: 26888951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical stress caused by wind on leaves of Theobroma cacao: Photosynthetic, molecular, antioxidative and ultrastructural responses.
    Reis GSM; de Almeida AF; Mangabeira PAO; Dos Santos IC; Pirovani CP; Ahnert D
    PLoS One; 2018; 13(6):e0198274. PubMed ID: 29949591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient uptake of phosphorus in epiphytic bromeliads.
    Winkler U; Zotz G
    Ann Bot; 2009 Feb; 103(3):477-84. PubMed ID: 19033287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implications of leaf ontogeny on drought-induced gradients of CAM expression and ABA levels in rosettes of the epiphytic tank bromeliad Guzmania monostachia.
    Rodrigues MA; Hamachi L; Mioto PT; Purgatto E; Mercier H
    Plant Physiol Biochem; 2016 Nov; 108():400-411. PubMed ID: 27552178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Safety and streamlining of woody shoots in wind: an empirical study across 39 species in tropical Australia.
    Butler DW; Gleason SM; Davidson I; Onoda Y; Westoby M
    New Phytol; 2012 Jan; 193(1):137-149. PubMed ID: 21999247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adjustments in CAM and enzymatic scavenging of H
    Carvalho V; Abreu ME; Mercier H; Nievola CC
    Plant Physiol Biochem; 2017 Apr; 113():32-39. PubMed ID: 28161646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced drag coefficient for high wind speeds in tropical cyclones.
    Powell MD; Vickery PJ; Reinhold TA
    Nature; 2003 Mar; 422(6929):279-83. PubMed ID: 12646913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ciliate species from tank-less bromeliads in a dry tropical forest and their geographical distribution in the Neotropics.
    DurÁn-ramÍrez CA; MayÉn-Estrada R
    Zootaxa; 2018 Oct; 4497(2):241-257. PubMed ID: 30313676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hydrodynamic effects of shape and size change during reconfiguration of a flexible macroalga.
    Boller ML; Carrington E
    J Exp Biol; 2006 May; 209(Pt 10):1894-903. PubMed ID: 16651555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.